洛谷题集——01迷宫(dfs、bfs)

本文探讨了01迷宫问题,通过BFS和DFS两种方法解决。BFS版本使用记忆化剪枝避免超时,而DFS版本利用标志数组防止重复访问。在效率上DFS更优,但空间需求较大。作者分享了学习经验和迷宫问题的解题思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

01迷宫

有一个仅由数字0与1组成的n×n格迷宫。若你位于一格0上,那么你可以移动到相邻4格中的某一格1上,同样若你位于一格1上,那么你可以移动到相邻4格中的某一格0上。
你的任务是:对于给定的迷宫,询问从某一格开始能移动到多少个格子(包含自身)。

输入格式
第1行为两个正整数n,m。
下面n行,每行n个字符,字符只可能是0或者1,字符之间没有空格。
接下来m行,每行2个用空格分隔的正整数i,j,对应了迷宫中第i行第j列的一个格子,询问从这一格开始能移动到多少格。

输出格式
m行,对于每个询问输出相应答案。

输入输出样例
输入
2 2
01
10
1 1
2 2
输出
4
4


BFS版本

该题是查询某一块符合条件的个数,而且是多组输入。
若用到单纯BFS的思路的话,很容易造成重复查询的情况,导致超时。
为了避免超时,这里应当用BFS+记忆化剪枝的方式提高效率。

#include<bits/stdc++.h>
using namespace std;
int mg[1010][1010], n, m;

//防止重复记格 
bool flag[1010][1010]={false};

int X[4]={0, 0, -1, 1};
int Y[4]={-1, 1, 0, 0};

struct node{
	int a;
	int b;
}Node, top;

bool judge(int xi, int yi, int x, int y)
{
	if(x<=0||y<=0||x>n||y>n)
	return false;
	if((mg[xi][yi]==1&&mg[x][y]==0)||(mg[xi][yi]==0&&mg[x][y]==1))
	return true;	
	return false;
}

map<int, int> mm;

int main()
{
	char ch;
	cin>>n>>m;
	
	for(int i=1; i<=n; i++)
	for(int j=1; j<=n; j++)
	{
		cin>>ch;
		if(ch=='0')
		mg[i][j]=0;
		else
		mg[i][j]=1;
	}
	
	while(m--)
	{
		int x, y, sum=0;
		cin>>x>>y;
		if(mg[x][y]==0||mg[x][y]==1)
		{
			queue<node> q;
			Node.a=x;
			Node.b=y;
			q.push(Node);
			while(!q.empty())
			{
				top=q.front();
//				cout<<top.a<<" "<<top.b<<endl;
				int xi=top.a;
				int yi=top.b;
				for(int i=0; i<4; i++)
				{
					if(judge(xi, yi, xi+X[i], yi+Y[i]))
					{
						Node.a=xi+X[i];
						Node.b=yi+Y[i];
						q.push(Node);
					}
				}
			//	防止重复记格 
				if(flag[xi][yi]==false)
					sum++;
				flag[xi][yi]=true;
				mg[xi][yi]=m+100010;
				q.pop();
			}
			mm[m+100010]=sum;
		}
/*		for(int i=1; i<=n; i++)
		{
			for(int j=1; j<=n; j++)
			cout<<mg[i][j]<<" ";
			cout<<endl;
		}*/
		cout<<mm[mg[x][y]];
		if(m!=0) cout<<endl;
	}
	
	return 0;
} 
DFS版本

相比与该题的BFS版本,个人认为DFS思路较为巧妙,而BFS版本就是单纯的模板改良。
主要思路:将要查询的方格i,通过DFS试探的方式查找出符合条件该方块周围符合的方块数,同时利用flag二维数组标记访问过的方格,防止重复访问(剪枝),并最终结果记录在ans[i]中。

#include<bits/stdc++.h>
using namespace std;
int n, m;
int flag[1010][1010];
int mg[1010][1010];
int ans[100010];
int X[4]={0, 0, 1, -1};
int Y[4]={1, -1, 0, 0};

void dfs(int x, int y, int i)
{
	if(x<1||y<1||x>n||y>n) return;
	ans[i]++;
	flag[x][y]=i;
	for(int j=0; j<4; j++)
	if(mg[x+X[j]][y+Y[j]]!=mg[x][y]&&flag[x+X[j]][y+Y[j]]==-1)
		dfs(x+X[j], y+Y[j], i);
}

int main()
{
	cin>>n>>m;
	for(int i=1; i<=n; i++)
	for(int j=1; j<=n; j++)
	{
		char ch;
		cin>>ch;
		if(ch=='1') mg[i][j]=1;
		else mg[i][j]=0;
	}
	
	memset(flag, -1, sizeof(flag));
	memset(ans, 0, sizeof(ans));
	for(int i=0; i<m; i++)
	{
		int x, y;
		cin>>x>>y;
		if(flag[x][y]==-1)
		{
			flag[x][y]=i;
			dfs(x, y, i);
		}
		else
			ans[i]=ans[flag[x][y]];
	}
	for(int i=0; i<m; i++)
	{
	    cout<<ans[i];
	    if(i!=m-1) cout<<endl;
	}
	return 0;
}
总结

在该题中,在运行效率上dfs代码比bfs代码要高,但在存储空间上bfs代码比dfs代码要小,各有所长。

希望能够将自己的一些学习经验分享给有需要的人。
我是小郑,一个坚持不懈的小白。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值