线性代数介绍
线性代数是数学的一个重要分支,它研究向量空间、线性变换和线性方程组。其概念抽象,应用广泛,是现代科学技术中不可或缺的数学工具。本篇将详细解释线性代数中的核心概念,包括行列式、矩阵、向量与向量空间、线性方程组、特征值与特征向量以及二次型,力求深入浅出,帮助读者全面理解。
一、 行列式 (Determinants)
行列式是线性代数中一个 fundamental 的概念,它是一个将方阵映射到一个标量的函数。行列式在判断矩阵是否可逆、求解线性方程组以及计算特征值等方面都起着至关重要的作用。
1. 行列式的定义
对于一个 n 阶方阵 A,其行列式是一个标量,记作 det(A) 或 |A|。 行列式的定义可以通过多种方式给出,其中一种常用的定义基于排列和逆序数的概念。
-
排列: 由 1, 2, ..., n 这 n 个数组成的一个有序数组称为一个 n 阶排列。例如,(1, 2, 3) 和 (2, 1, 3) 都是 3 阶排列。
-
逆序数: 在一个排列中,如果一对数的前后位置与标准顺序(从小到大)相反,即前面的数大于后面的数,则称其为一个逆序。一个排列中逆序的总数称为该排列的逆序数。例如,在排列 (2, 1, 3) 中,逆序只有一个 (2, 1),因此其逆序数为 1。
基于排列和逆序数,n 阶方阵 A = (aᵢⱼ) 的行列式定义为:
det(A) = ∑ (-1)^τ(p) * a₁p₁ * a₂p₂ * ... * anpn
其中:
- ∑ 表示对所有 n 阶排列 p = (p₁, p₂, ..., pn) 求和。
- p 是 n 阶排列,(p₁, p₂, ..., pn) 是行指标为 1, 2, ..., n,列指标为 p₁, p₂, ..., pn 的元素乘积。
- τ(p) 是排列 p 的逆序数。
- (-1)^τ(p) 是符号,当 τ(p) 为偶数时为 +1,当 τ(p) 为奇数时为 -1。
理解行列式的定义:
行列式的定义看起来较为复杂,但其核心思想是: 从方阵 A 中选取 n 个不同行不同列的元素相乘,并将所有可能的乘积进行代数和,其中每个乘积的符号由列指标排列的逆序数决定。
例子: 2 阶行列式和 3 阶行列式
-
2 阶行列式: 对于 2 阶方阵 A = [[a₁₁, a₁₂], [a₂₁, a₂₂]],其行列式为:
det(A) = a₁₁a₂₂ - a₁₂a₂₁
只有两个 2 阶排列: (1, 2) 和 (2, 1)。
- 排列 (1, 2) 的逆序数为 0,对应项为 a₁₁a₂₂,符号为 (-1)^0 = +1。
- 排列 (2, 1) 的逆序数为 1,对应项为 a₁₂a₂₁,符号为 (-1)^1 = -1。
-
3 阶行列式: 对于 3 阶方阵 A = [[a₁₁, a₁₂, a₁₃], [a₂₁, a₂₂, a₂₃], [a₃₁, a₃₂, a₃₃]],其行列式为:
det(A) = a₁₁a₂₂a₃₃ + a₁₂a₂₃a₃₁ + a₁₃a₂₁a₃₂ - a₁₃a₂₂a₃₁ - a₁₁a₂₃a₃₂ - a₁₂a₂₁a₃₃
共有 6 个 3 阶排列,分别计算其逆序数并按定义展开即可得到上述公式。
2. 行列式的性质
行列式具有一系列重要的性质,这些性质简化了行列式的计算,并帮助我们理解行列式的本质。
-
性质 1: 转置不变性
det(Aᵀ) = det(A)
矩阵的转置行列式等于原行列式。这意味着行列式的行和列具有对称性,关于行的性质对列也成立,反之亦然。
-
性质 2: 行(列)互换变号性
互换行列式的两行(或两列),行列式变号。
det([[r₂], [r₁], [r₃], ...]) = - det([[r₁], [r₂], [r₃], ...])
其中 rᵢ 代表矩阵的行向量。
-
性质 3: 倍乘性
用数 k 乘行列式的某一行(或某一列),等于用数 k 乘此行列式。
det([[kr₁], [r₂], [r₃], ...]) = k * det([[r₁], [r₂], [r₃], ...])
-
性质 4: 两行(列)相同或成比例,行列式为零
如果行列式有两行(或两列)完全相同或对应元素成比例,则行列式为零。 这是性质 2 和性质 3 的推论。
-
性质 5: 行列式的线性性
如果行列式的某一行(或某一列)的元素都是两个数的和,则行列式可以拆成两个行列式的和。
det([[r₁'+r₁''], [r₂], [r₃], ...]) = det([[r₁'], [r₂], [r₃], ...]) + det([[r₁''], [r₂], [r₃], ...])
-
性质 6: 倍加性
把行列式的某一行(或某一列)的倍数加到另一行(或另一列),行列式的值不变。
det([[r₁ + kr₂], [r₂], [r₃], ...]) = det([[r₁], [r₂], [r₃], ...])
3. 行列式的计算
-
展开定理(拉普拉斯展开)
展开定理提供了一种递归计算行列式的方法,尤其适用于高阶行列式。
代数余子式: 在 n 阶行列式 |A| 中,划去元素 aᵢⱼ 所在的第 i 行和第 j 列后,剩下的 (n-1) 阶行列式称为元素 aᵢⱼ 的余子式,记作 Mᵢⱼ。代数余子式 Aᵢⱼ 定义为:
Aᵢⱼ = (-1)^(i+j) * Mᵢⱼ
展开定理: 行列式 |A| 可以按任何一行(或任何一列)展开,其值等于该行(或该列)元素与其对应的代数余子式乘积之和。
-
按第 i 行展开:
det(A) = aᵢ₁Aᵢ₁ + aᵢ₂Aᵢ₂ + ... + aᵢnAᵢn = ∑ⱼ=1^n aᵢⱼAᵢⱼ
-
按第 j 列展开:
det(A) = a₁ⱼA₁ⱼ + a₂ⱼA₂ⱼ + ... + anⱼAnⱼ = ∑ᵢ=1^n aᵢⱼAᵢⱼ
例子: 使用展开定理计算 3 阶行列式
det(A) = a₁₁A₁₁ + a₁₂A₁₂ + a₁₃A₁₃ = a₁₁ * (-1)^(1+1) * det([[a₂₂, a₂₃], [a₃₂, a₃₃]]) + a₁₂ * (-1)^(1+2) * det([[a₂₁, a₂₃], [a₃₁, a₃₃]]) + a₁₃ * (-1)^(1+3) * det([[a₂₁, a₂₂], [a₃₁, a₃₂]]) = a₁₁ (a₂₂a₃₃ - a₂₃a₃₂) - a₁₂ (a₂₁a₃₃ - a₂₃a₃₁) + a₁₃ (a₂₁a₃₂ - a₂₂a₃₁)
-
-
初等变换法
利用行列式的性质,可以通过初等行变换或初等列变换将行列式化为上三角行列式(或下三角行列式),上三角行列式的值等于对角线元素之积。
初等行变换对行列式的影响:
- 互换两行: 行列式变号。
- 用非零常数 k 乘某一行: 行列式乘 k。
- 将某一行乘常数 k 加到另一行: 行列式的值不变。
步骤:
- 利用倍加性将行列式化为上三角行列式。
- 记录行互换的次数,设为 s。
- 记录倍乘运算的乘数因子,设为 k₁, k₂, ..., kt。
- 计算上三角行列式对角线元素之积,设为 D。
- 原行列式的值为 (-1)^s * (1/k₁ * 1/k₂ * ... * 1/kt) * D。
例子: 使用初等变换法计算行列式
通过初等行变换将行列式化为上三角形式,然后计算对角线元素之积即可。
4. 克拉默法则
克拉默法则提供了一种用行列式求解n 元线性方程组的方法,要求方程个数等于未知量个数,且系数矩阵的行列式不为零。
对于 n 元线性方程组 Ax = b,其中 A 是 n 阶方阵,x = [x₁, x₂, ..., xn]ᵀ,b = [b₁, b₂, ..., bn]ᵀ。如果 det(A) ≠ 0,则方程组有唯一解,解为:
xᵢ = det(Aᵢ) / det(A) (i = 1, 2, ..., n)
其中 Aᵢ 是将系数矩阵 A 的第 i 列用常数项向量 b 替换后得到的矩阵。
局限性:
克拉默法则虽然提供了解析解,但在实际计算中效率较低,对于大型方程组,高斯消元法更实用。克拉默法则主要用于理论分析和求解小规模方程组。
二、 矩阵 (Matrices)
矩阵是线性代数的核心研究对象,它是一个矩形的数表,可以用来表示线性变换、线性方程组等。矩阵的运算和性质是线性代数的重要内容。
1. 矩阵的概念与运算
-
矩阵的定义: 由 m × n 个数 aᵢⱼ (i=1, 2, ..., m; j=1, 2, ..., n) 排列成 m 行 n 列的矩形数表称为 m 行 n 列矩阵,简称 m × n 矩阵,记作:
A = [[a₁₁, a₁₂, ..., a₁n], [a₂₁, a₂₂, ..., a₂n], [..., ..., ..., ...], [am₁, am₂, ..., amn]]
- m 称为矩阵 A 的行数,n 称为矩阵 A 的列数。
- 当 m = n 时,矩阵 A 称为 n