线性代数介绍

线性代数介绍

线性代数是数学的一个重要分支,它研究向量空间、线性变换和线性方程组。其概念抽象,应用广泛,是现代科学技术中不可或缺的数学工具。本篇将详细解释线性代数中的核心概念,包括行列式、矩阵、向量与向量空间、线性方程组、特征值与特征向量以及二次型,力求深入浅出,帮助读者全面理解。

一、 行列式 (Determinants)

行列式是线性代数中一个 fundamental 的概念,它是一个将方阵映射到一个标量的函数。行列式在判断矩阵是否可逆、求解线性方程组以及计算特征值等方面都起着至关重要的作用。

1. 行列式的定义

对于一个 n 阶方阵 A,其行列式是一个标量,记作 det(A) 或 |A|。 行列式的定义可以通过多种方式给出,其中一种常用的定义基于排列逆序数的概念。

  • 排列: 由 1, 2, ..., n 这 n 个数组成的一个有序数组称为一个 n 阶排列。例如,(1, 2, 3) 和 (2, 1, 3) 都是 3 阶排列。

  • 逆序数: 在一个排列中,如果一对数的前后位置与标准顺序(从小到大)相反,即前面的数大于后面的数,则称其为一个逆序。一个排列中逆序的总数称为该排列的逆序数。例如,在排列 (2, 1, 3) 中,逆序只有一个 (2, 1),因此其逆序数为 1。

基于排列和逆序数,n 阶方阵 A = (aᵢⱼ) 的行列式定义为:

det(A) = ∑ (-1)^τ(p) * a₁p₁ * a₂p₂ * ... * anpn

其中:

  • ∑ 表示对所有 n 阶排列 p = (p₁, p₂, ..., pn) 求和。
  • p 是 n 阶排列,(p₁, p₂, ..., pn) 是行指标为 1, 2, ..., n,列指标为 p₁, p₂, ..., pn 的元素乘积。
  • τ(p) 是排列 p 的逆序数。
  • (-1)^τ(p) 是符号,当 τ(p) 为偶数时为 +1,当 τ(p) 为奇数时为 -1。

理解行列式的定义:

行列式的定义看起来较为复杂,但其核心思想是: 从方阵 A 中选取 n 个不同行不同列的元素相乘,并将所有可能的乘积进行代数和,其中每个乘积的符号由列指标排列的逆序数决定。

例子: 2 阶行列式和 3 阶行列式

  • 2 阶行列式: 对于 2 阶方阵 A = [[a₁₁, a₁₂], [a₂₁, a₂₂]],其行列式为:

    det(A) = a₁₁a₂₂ - a₁₂a₂₁
    

    只有两个 2 阶排列: (1, 2) 和 (2, 1)。

    • 排列 (1, 2) 的逆序数为 0,对应项为 a₁₁a₂₂,符号为 (-1)^0 = +1。
    • 排列 (2, 1) 的逆序数为 1,对应项为 a₁₂a₂₁,符号为 (-1)^1 = -1。
  • 3 阶行列式: 对于 3 阶方阵 A = [[a₁₁, a₁₂, a₁₃], [a₂₁, a₂₂, a₂₃], [a₃₁, a₃₂, a₃₃]],其行列式为:

    det(A) = a₁₁a₂₂a₃₃ + a₁₂a₂₃a₃₁ + a₁₃a₂₁a₃₂ - a₁₃a₂₂a₃₁ - a₁₁a₂₃a₃₂ - a₁₂a₂₁a₃₃
    

    共有 6 个 3 阶排列,分别计算其逆序数并按定义展开即可得到上述公式。

2. 行列式的性质

行列式具有一系列重要的性质,这些性质简化了行列式的计算,并帮助我们理解行列式的本质。

  • 性质 1: 转置不变性

    det(Aᵀ) = det(A)
    

    矩阵的转置行列式等于原行列式。这意味着行列式的行和列具有对称性,关于行的性质对列也成立,反之亦然。

  • 性质 2: 行(列)互换变号性

    互换行列式的两行(或两列),行列式变号。

    det([[r₂], [r₁], [r₃], ...]) = - det([[r₁], [r₂], [r₃], ...])
    

    其中 rᵢ 代表矩阵的行向量。

  • 性质 3: 倍乘性

    用数 k 乘行列式的某一行(或某一列),等于用数 k 乘此行列式。

    det([[kr₁], [r₂], [r₃], ...]) = k * det([[r₁], [r₂], [r₃], ...])
    
  • 性质 4: 两行(列)相同或成比例,行列式为零

    如果行列式有两行(或两列)完全相同或对应元素成比例,则行列式为零。 这是性质 2 和性质 3 的推论。

  • 性质 5: 行列式的线性性

    如果行列式的某一行(或某一列)的元素都是两个数的和,则行列式可以拆成两个行列式的和。

    det([[r₁'+r₁''], [r₂], [r₃], ...]) = det([[r₁'], [r₂], [r₃], ...]) + det([[r₁''], [r₂], [r₃], ...])
    
  • 性质 6: 倍加性

    把行列式的某一行(或某一列)的倍数加到另一行(或另一列),行列式的值不变。

    det([[r₁ + kr₂], [r₂], [r₃], ...]) = det([[r₁], [r₂], [r₃], ...])
    

3. 行列式的计算

  • 展开定理(拉普拉斯展开)

    展开定理提供了一种递归计算行列式的方法,尤其适用于高阶行列式。

    代数余子式: 在 n 阶行列式 |A| 中,划去元素 aᵢⱼ 所在的第 i 行和第 j 列后,剩下的 (n-1) 阶行列式称为元素 aᵢⱼ 的余子式,记作 Mᵢⱼ。代数余子式 Aᵢⱼ 定义为:

    Aᵢⱼ = (-1)^(i+j) * Mᵢⱼ
    

    展开定理: 行列式 |A| 可以按任何一行(或任何一列)展开,其值等于该行(或该列)元素与其对应的代数余子式乘积之和。

    • 按第 i 行展开:

      det(A) = aᵢ₁Aᵢ₁ + aᵢ₂Aᵢ₂ + ... + aᵢnAᵢn  = ∑ⱼ=1^n aᵢⱼAᵢⱼ
      
    • 按第 j 列展开:

      det(A) = a₁ⱼA₁ⱼ + a₂ⱼA₂ⱼ + ... + anⱼAnⱼ  = ∑ᵢ=1^n aᵢⱼAᵢⱼ
      

    例子: 使用展开定理计算 3 阶行列式

    det(A) = a₁₁A₁₁ + a₁₂A₁₂ + a₁₃A₁₃
           = a₁₁ * (-1)^(1+1) * det([[a₂₂, a₂₃], [a₃₂, a₃₃]])
           + a₁₂ * (-1)^(1+2) * det([[a₂₁, a₂₃], [a₃₁, a₃₃]])
           + a₁₃ * (-1)^(1+3) * det([[a₂₁, a₂₂], [a₃₁, a₃₂]])
           = a₁₁ (a₂₂a₃₃ - a₂₃a₃₂) - a₁₂ (a₂₁a₃₃ - a₂₃a₃₁) + a₁₃ (a₂₁a₃₂ - a₂₂a₃₁)
    
  • 初等变换法

    利用行列式的性质,可以通过初等行变换初等列变换将行列式化为上三角行列式(或下三角行列式),上三角行列式的值等于对角线元素之积。

    初等行变换对行列式的影响:

    • 互换两行: 行列式变号。
    • 用非零常数 k 乘某一行: 行列式乘 k。
    • 将某一行乘常数 k 加到另一行: 行列式的值不变。

    步骤:

    1. 利用倍加性将行列式化为上三角行列式。
    2. 记录行互换的次数,设为 s。
    3. 记录倍乘运算的乘数因子,设为 k₁, k₂, ..., kt。
    4. 计算上三角行列式对角线元素之积,设为 D。
    5. 原行列式的值为 (-1)^s * (1/k₁ * 1/k₂ * ... * 1/kt) * D。

    例子: 使用初等变换法计算行列式

    通过初等行变换将行列式化为上三角形式,然后计算对角线元素之积即可。

4. 克拉默法则

克拉默法则提供了一种用行列式求解n 元线性方程组的方法,要求方程个数等于未知量个数,且系数矩阵的行列式不为零。

对于 n 元线性方程组 Ax = b,其中 A 是 n 阶方阵,x = [x₁, x₂, ..., xn]ᵀ,b = [b₁, b₂, ..., bn]ᵀ。如果 det(A) ≠ 0,则方程组有唯一解,解为:

xᵢ = det(Aᵢ) / det(A)  (i = 1, 2, ..., n)

其中 Aᵢ 是将系数矩阵 A 的第 i 列用常数项向量 b 替换后得到的矩阵。

局限性:

克拉默法则虽然提供了解析解,但在实际计算中效率较低,对于大型方程组,高斯消元法更实用。克拉默法则主要用于理论分析和求解小规模方程组。

二、 矩阵 (Matrices)

矩阵是线性代数的核心研究对象,它是一个矩形的数表,可以用来表示线性变换、线性方程组等。矩阵的运算和性质是线性代数的重要内容。

1. 矩阵的概念与运算

  • 矩阵的定义: 由 m × n 个数 aᵢⱼ (i=1, 2, ..., m; j=1, 2, ..., n) 排列成 m 行 n 列的矩形数表称为 m 行 n 列矩阵,简称 m × n 矩阵,记作:

    A = [[a₁₁, a₁₂, ..., a₁n],
         [a₂₁, a₂₂, ..., a₂n],
         [..., ..., ..., ...],
         [am₁, am₂, ..., amn]]
    
    • m 称为矩阵 A 的行数,n 称为矩阵 A 的列数
    • 当 m = n 时,矩阵 A 称为 n
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值