[CSP-J 2019] 加工零件题解

本文针对[CSP-J2019]加工零件问题进行解析,通过建立图论模型,利用单源最短路径算法求解各工人间零件加工依赖关系,进而判断轩轩是否需要提供原材料。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[CSP-J 2019] 加工零件

一、题目

题目描述

凯凯的工厂正在有条不紊地生产一种神奇的零件,神奇的零件的生产过程自然也很神奇。工厂里有 nnn 位工人,工人们从 1∼n1 \sim n1n 编号。某些工人之间存在双向的零件传送带。保证每两名工人之间最多只存在一条传送带。

如果 xxx 号工人想生产一个被加工到第 L(L>1)L (L \gt 1)L(L>1) 阶段的零件,则所有xxx 号工人有传送带直接相连的工人,都需要生产一个被加工到第 L−1L - 1L1 阶段的零件(但 xxx 号工人自己无需生产第 L−1L - 1L1 阶段的零件)。

如果 xxx 号工人想生产一个被加工到第 1 阶段的零件,则所有xxx 号工人有传送带直接相连的工人,都需要为 xxx 号工人提供一个原材料。

轩轩是 1 号工人。现在给出 qqq 张工单,第 iii 张工单表示编号为 aia_iai 的工人想生产一个第 LiL_iLi 阶段的零件。轩轩想知道对于每张工单,他是否需要给别人提供原材料。他知道聪明的你一定可以帮他计算出来!

输入格式

第一行三个正整数 nnnmmmqqq,分别表示工人的数目、传送带的数目和工单的数目。

接下来 mmm 行,每行两个正整数 uuuvvv,表示编号为 uuuvvv 的工人之间存在一条零件传输带。保证 u≠vu \neq vu=v

接下来 qqq 行,每行两个正整数 aaaLLL,表示编号为 aaa 的工人想生产一个第 LLL 阶段的零件。

输出格式

qqq 行,每行一个字符串 Yes 或者 No。如果按照第 iii 张工单生产,需要编号为 1 的轩轩提供原材料,则在第 iii 行输出 Yes;否则在第 iii 行输出 No。注意输出不含引号。

样例

样例输入 1
3 2 6
1 2
2 3
1 1
2 1
3 1
1 2
2 2
3 2
样例输出 1
No
Yes
No
Yes
No
Yes
样例解释 1

1

编号为 1 的工人想生产第 1 阶段的零件,需要编号为 2 的工人提供原材料。

编号为 2 的工人想生产第 1 阶段的零件,需要编号为 1 和 3 的工人提供原材料。

编号为 3 的工人想生产第 1 阶段的零件,需要编号为 2 的工人提供原材料。

编号为 1 的工人想生产第 2 阶段的零件,需要编号为 2 的工人生产第 1 阶段的零 件,需要编号为 1 和 3 的工人提供原材料。

编号为 2 的工人想生产第 2 阶段的零件,需要编号为 1 和 3 的工人生产第 1 阶段的零件,他/她们都需要编号为 2 的工人提供原材料。

编号为 3 的工人想生产第 2 阶段的零件,需要编号为 2 的工人生产第 1 阶段的零件,需要编号为 1 和 3 的工人提供原材料。

样例输入 2
5 5 5
1 2
2 3
3 4
4 5
1 5
1 1
1 2
1 3
1 4
1 5
样例输出 2
No
Yes
No
Yes
Yes
样例解释 2

2

编号为 1 的工人想生产第 1 阶段的零件,需要编号为 2 和 5 的工人提供原材料。

编号为 1 的工人想生产第 2 阶段的零件,需要编号为 2 和 5 的工人生产第 1 阶段的零件,需要编号为 1,3,41,3,41,3,4 的工人提供原材料。

编号为 1 的工人想生产第 3 阶段的零件,需要编号为 2 和 5 的工人生产第 2 阶段的零件,需要编号为 1,3,41,3,41,3,4 的工人生产第 1 阶段的零件,需要编号为 2,3,4,52,3,4,52,3,4,5 的工人提供原材料。

编号为 1 的工人想生产第 4 阶段的零件,需要编号为 2 和 5 的工人生产第 3 阶段的零件,需要编号为 1,3,41,3,41,3,4 的工人生产第 2 阶段的零件,需要编号为 2,3,4,52,3,4,52,3,4,5 的工人生产第 1 阶段的零件,需要全部工人提供原材料。

编号为 1 的工人想生产第 5 阶段的零件,需要编号为 2 和 5 的工人生产第 4 阶段的零件,需要编号为 1,3,41,3,41,3,4 的工人生产第 3 阶段的零件,需要编号为 2,3,4,52,3,4,52,3,4,5 的工人生产第 2 阶段的零件,需要全部工人生产第 1 阶段的零件,需要全部工人提供原材料。

数据范围

共 20 个测试点。

1≤u,v,a≤n1 \leq u, v, a \leq n1u,v,an

测试点 1~4,1≤n,m≤10001 \leq n, m \leq 10001n,m1000q=3q = 3q=3L=1L = 1L=1

测试点 5~8,1≤n,m≤10001 \leq n, m \leq 10001n,m1000q=3q = 3q=31≤L≤101 \leq L \leq 101L10

测试点 9~12,1≤n,m,L≤10001 \leq n, m, L \leq 10001n,m,L10001≤q≤1001 \leq q \leq 1001q100

测试点 13~16,1≤n,m,L≤10001 \leq n, m, L \leq 10001n,m,L10001≤q≤1051 \leq q \leq 10^51q105

测试点 17~20,1≤n,m,q≤1051 \leq n, m, q \leq 10^51n,m,q1051≤L≤1091 \leq L \leq 10^91L109

二、分析

题目大意为在一张图上给定一个点 iii ,若从 iii 点走 LLL 条边后可以到达 1 号点,输出 Yes 否则输出 No

则可知若 LLL 条边走 1 到 iii 的最短路都不能到达 1 ,则一定不能到达 1 号点,所以若 1 到 iii 的最短路大于 LLL 则输出 No

由于只需判断是否最终走到 1 ,所以可以想到通过奇偶性来判断;

又由于若 [1,i][1, i][1,i] 的最短路径长度为奇数,则只要 LLL 为大于最短路的奇数,则点 1 一定要提供原材料;

同理,若 [1,i][1, i][1,i] 的最短路径长度为偶数,则只要 LLL 为大于最短路的偶数,则点 1 一定要提供原材料;

所以可以以 1 号节点为源点,用单源最短路分别求出 [1,i][1, i][1,i] 走奇数条边与走偶数条边的最短路;

在判断时,若 LLL 为奇数且 LLL 大于 [1,i][1, i][1,i] 走奇数条边最短路长度,则可以走到 1 号点;

同理,若 LLL 为偶数且 LLL 大于 [1,i][1, i][1,i] 走偶数条边最短路长度,则可以走到 1 号点;

三、代码

#include <cstdio>
#include <vector>
#include <queue>
#include <cstring>
#include <algorithm> 
#define MAXN 100005
using namespace std;
int n, m, q;
vector <int> g[MAXN];
int dis[MAXN][2]; // 0 为走偶数条边的最短路, 1 为走奇数条边的最短路 
void dijkstra(int s) {
	queue <int> q;
	memset(dis, 0x3f, sizeof(dis));
	dis[s][0] = 0; // 只需赋跑偶数条边的初值 
	q.push(s);
	while (!q.empty()) {
		int t = q.front();
		q.pop();
		int l = g[t].size();
		for (int i = 0; i < l; i++) {
			int v = g[t][i]; 
			if (dis[v][0] > dis[t][1] + 1) { // 偶数边最短路 
				dis[v][0] = dis[t][1] + 1;
				q.push(v);
			}
			if (dis[v][1] > dis[t][0] + 1) { // 奇数边最短路 
				dis[v][1] = dis[t][0] + 1;
				q.push(v);
			}
		}
	}
}
int main() {
	scanf("%d %d %d", &n, &m, &q);
	for (int i = 1; i <= m; i++) {
		int x, y;
		scanf("%d %d", &x, &y);
		g[x].push_back(y); // 双向建边 
		g[y].push_back(x);
	}
	dijkstra(1); // 最短路 
	for (int i = 1; i <= q; i++) {
		int x, y;
		scanf("%d %d", &x, &y);
		if (dis[x][y & 1] <= y) { // 判断是否可行 
			printf("Yes\n");
		} else {
			printf("No\n");
		}
	}
}
对不起,由于我是一个文本交互的模型,我无法提供图像内容或直接链接到具体的题解或解决方案。但是,我可以帮你理解CSP-J2019公交换乘问题的基本概念和解决策略,这通常涉及到数据结构、图论以及算法设计。 CSP-J2019中的公交换乘问题可能是一个典型的旅行商问题(Traveling Salesman Problem, TSP)变种,或者是寻找最优路径的问题,其中涉及到公交网络中不同站点之间的最短路径或最少换乘次数。解决此类问题通常需要使用动态规划、贪心算法或者一些启发式搜索算法,比如A*搜索或Dijkstra算法。 如果你需要了解题目的基本思路,可能会这样操作: 1. 建立一个图,节点代表公交站点,边代表两个站点之间的路线及其长度或换乘次数。 2. 对于每个节点,计算从起点到所有其他节点的最短路径,形成一个邻接矩阵或邻接表。 3. 使用动态规划方法,例如记忆化搜索,尝试所有可能的路径,每次选择当前未访问节点中距离最近的一个,直到遍历完所有节点并回到起点,记录下总的距离或换乘次数。 4. 为了优化,可以考虑使用启发式搜索策略,如用估算的总距离作为启发信息,优先探索看起来更优的路径。 如果你对具体解法有疑问,或者想了解某个步骤的详细操作,请告诉我,我会尽力解释。至于详细的题解,建议你查阅相关的代码库、论坛帖子或在线教程,它们通常会有文字描述和步骤示例。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值