1043 Is It a Binary Search Tree (25分)测试点5,6

本文探讨了BST树的先序遍历与其镜像树先序序列相同的情况,解析了在这种特殊条件下如何正确地进行后序遍历,并提供了实现代码。深入理解BST树的遍历特性对于算法设计和数据结构掌握至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

测试点5,6均是同一种情况,那便是该BST树的先序和其镜像树的先序序列完全相同,这种情况下要按原树进行后序遍历而不是镜像BST树!


BST先序遍历==树的插入顺序


BST的中序遍历==有序序列


附本人AC代码:

#include<iostream>
#include<vector>
using namespace std;
struct Node {
	int val;
	Node*left, *right;
};
void MT1(Node*&T,Node*&Root) {
	if (Root == NULL) {
		Root = T;
		return;
	}
	if (T->val < Root->val) {
		MT1(T, Root->left);
	}
	else MT1(T, Root->right);
}
vector<int>V1, V2, ans, res;
void pre1(Node*T) {
	if (T == NULL)return;
	V1.push_back(T->val);
	pre1(T->left);
	pre1(T->right);
}
void pre2(Node*T) {
	if (T == NULL)return;
	V2.push_back(T->val);
	pre2(T->right);
	pre2(T->left);
}
void post1(Node*T) {
	if (T == NULL)return;
	post1(T->left);
	post1(T->right);
	res.push_back(T->val);
}
void post2(Node*T) {
	if (T == NULL)return;
	post2(T->right);
	post2(T->left);
	res.push_back(T->val);
}
int main() {
	int N;
	Node *root1 = new Node();
	root1 = NULL;
	scanf("%d", &N);
	for (int i = 0; i < N; i++) {
		Node*tmp = new Node();
		scanf("%d", &tmp->val);
		ans.push_back(tmp->val);
		MT1(tmp, root1);
	}
	pre1(root1);
	pre2(root1);
	if (V1 == ans) {
		printf("YES\n");
		post1(root1);
	}
	else if (V2 == ans) {	//此处不加else测试点5,6出错
		printf("YES\n");
		post2(root1);
	}
	if (res.size() == 0)printf("NO\n");
	else for (int i = 0; i < res.size(); i++) {
		if (i == 0)printf("%d", res[i]);
		else printf(" %d", res[i]);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值