LLMRG: Improving Recommendations through Large Language Model Reasoning Graphs
摘要
推荐系统旨在为用户提供相关的建议,但往往缺乏可解释性,并且无法捕捉用户行为和简档之间的更高级别的语义关系。为此,本文提出了一种利用大型语言模型构造个性化推理图的方法。这些图表通过因果和逻辑推理将用户的属性和行为序列链接起来,以可解释的方式表示用户的兴趣。本文提出的LLM推理图(LLMRG)由链式图推理、发散扩展、自验证与评分、知识库自改进四个部分组成。使用图神经网络对所得到的推理图进行编码,该图神经网络用作改进传统推荐器系统的附加输入,而不需要额外的用户或项目信息。我们的方法展示了LLM如何通过个性化的推理图来实现更具逻辑性和可解释性的推荐系统。
模型框架
该框架有四个组件:1)链图推理,2)发散扩展,3)自我验证和评分,和4)自我改进的知识库
流程如下:(以单个用户为例)
- 模型输入用户交互序列 和 用户属性
- 分支 :基本的序列模型模块、