SIGformer: Sign-aware Graph Transformer for Recommendation(Sigir24)
摘要
在推荐系统中,大多数基于图的方法只关注用户的正面反馈,而忽略了有价值的负面反馈。将正反馈和负反馈结合起来形成一个带符号的图,可以更全面地理解用户的偏好。然而,现有的两类反馈融合算法存在两个主要局限性:1)它们分别处理正反馈和负反馈,无法从整体上利用签名图中的协作信息; 2)它们依赖于MLP或GNN从负反馈中提取信息,可能效果不佳.为了克服这些局限性,我们引入了SIGformer,一种新的基于符号感知的图推荐方法。SIGformer结合了两种创新的位置编码,可捕获带符号图的频谱属性和路径模式,从而能够充分利用整个图。
引言
普通的Transformer只关注通过自我注意的语义相似性,缺乏显式编码的协作信息的签名图。尽管现有的图Transformer模型[6,36,65]引入了微妙的位置编码来捕获图结构,但它们既不是专门为签名图设计的,也不是为推荐任务设计的。为了解决这些挑战,我们引入了两种为基于符号感知图的推荐量身定制的新颖位置编码:
(1)信号感知频谱编码(SSE)。为了整合整个符号图的结构,我们提出了在符号图上使用节点谱表示。具体地说,我们将符号图的拉普拉斯矩阵的低频特征向量作为位置编码。我们的理论分析支持了这种方法的有效性:配备SSE的Transformer可以被解释为一个低通滤波器,使具有正反馈的用户-项目对的嵌入更近,而使具有负反馈的用户-项目对的嵌入更远。
(2)信号感知路径编码(SPE)。为了进一步捕捉用户和项目之间的协作关系,我们关注符号图中的路径模式,将这些路径