安装与启动
通过anaconda安装,anaconda自带jupyter notebook。
启动命令:终端输入jupyter notebook,自动打开浏览器默认界面。
基础操作
新建文件:在浏览器界面点击右上角“New”“Python3”(或其他内核)创建一个新的notebook文件。
单元格类型:一个notebook由多个单元格组成,每一个单元格可以是:1.“代码”:输入代码并执行。2.“Markdown”:编写文档。3.“原始”:直接文本,不会被转换。4“标题”:用于设置标题。
代码学习
1.导入必要库
Seaborn 是基于 Matplotlib 的高级可视化库,特别适合用于绘制统计图表。
Matplotlib 是 Python 中最常用的数据可视化库之一,适用于创建静态图表。
numpy基础数值计算库,提供高性能的多维数组对象( ndarray )和数学函数。
pandas基于 NumPy 构建,专注于表格型数据(如 Excel 表格、SQL 表)的处理。
2.数据预处理
1.读取数据
2.检查数据信息
3.处理缺少值
4.数据类型转换
3.Matplotlib 和 Seaborn 两大数据可视化库
Matplotlib基础绘图库,提供底层绘图接口(类似 MATLAB 的语法)。适合高度定制化的图表(如科研论文、复杂布局)。
Seaborn基于 Matplotlib 的高级封装,专注于统计可视化(如分布、关系、分类数据)。自动优化默认样式(颜色、字体等),适合快速探索性分析。
用 Seaborn:需要快速生成统计图表(如分布、相关性、分类比较)。用 Matplotlib:需要完全控制图表元素(如自定义坐标轴、多子图复杂布局)。混合使用: