【归并排序】【洛谷】【P1309-瑞士轮】

该博客探讨了一种优化瑞士轮比赛算法的方法,通过应用归并排序策略,将时间复杂度从O(nlogn)降低到O(n),从而解决了在限制时间内处理大量数据的问题。博主详细介绍了算法实现过程,包括如何处理降序数组,以及如何在每轮比赛中更新胜者和败者数组。最后,展示了如何在C++中实现这一优化算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门

/*
	【归并排序】【洛谷】【P1309-瑞士轮】 
	归并排序  合并 
		
	sort时间复杂度为o(nlogn)   500ms  跑1e5  超时 
	
	因为数组是降序 
	每次对决 形成  胜者数组 败者数组 这两个数组也是降序    
	所以进行归并排序  时间复杂度为O(n)  可以跑
*/ 
#include<iostream>
#include<algorithm>
#define int long long
using namespace std;
const int maxn=2e5+10;
typedef struct node{
	int idx;
	int score;
	int w;
}; 
node a[maxn],b[maxn],c[maxn];
int cot_i,cot_j;
bool cmp(node a,node b)
{
	if(a.score!=b.score)
		return a.score>b.score;
	return a.idx<b.idx;
}
void merge()
{
	int i=1,j=1,cot=1;
	while(i<cot_i&&j<cot_j)
	{
		if(cmp(b[i],c[j]))
			a[cot++]=b[i++];
		else
			a[cot++]=c[j++];
	}
	while(i<cot_i) a[cot++]=b[i++];
	while(j<cot_j) a[cot++]=c[j++];
}
signed main()
{
	int n,r,q;cin>>n>>r>>q;
	n=n*2;
	for(int i=1;i<=n;i++)
	{
		cin>>a[i].score;
		a[i].idx=i;
	}
	for(int i=1;i<=n;i++) cin>>a[i].w;
	sort(a+1,a+1+n,cmp);
	while(r--)
	{
		cot_i=1;  cot_j=1;
		for(int i=1;i<=n/2;i++)
		{
			if(a[i*2-1].w>a[i*2].w)
			{
				a[i*2-1].score++;
				b[cot_i++]=a[i*2-1];
				c[cot_j++]=a[i*2];
			}
			else{
				a[i*2].score++;
				b[cot_i++]=a[i*2];
				c[cot_j++]=a[i*2-1];
			}
		}
		merge();//O(n) 复杂度
	}
	cout<<a[q].idx;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值