- 博客(4)
- 问答 (1)
- 收藏
- 关注
原创 TADAM: Task dependent adaptive metric for improved few-shot learning阅读笔记
人类通过看少数样例甚至是一个样例后,就可以学会识别从未见过的新类别,当然我们希望机器也可以具备这样的能力,所以近些年few-shot learning得到了广泛的关注,它的目标可以概括为构建一个可以从少量标记数据中进行归纳的模型。这里我们举个例子来描述小样本算法中的一个经典任务。在5-way 5-shot任务中,我们有25张图片做为support set,其中包含5张猫类照片,5张狗类张片,5张人...
2019-01-25 14:36:23
3173
原创 《Aspect Level Sentiment Classification with Deep Memory Network》,《Memory Network》阅读笔记
Abstract这篇文章是介绍的是使用Deep Memory Network在aspect level上做情感分类。与feature-based SVM,LSTM这些模型不同的是,在推断每个aspect时,模型可以明确地捕捉到每个上下文单词的重要性。这个重要的程度和文本的表示时通过多层计算的,每一层都是基于external memory的attention神经网络模型。通过在laptop和re...
2018-05-10 00:42:19
2914
空空如也
Keras实现LSTM进行情感分析的问题,如何正确增加隐层
2017-12-02
TA创建的收藏夹 TA关注的收藏夹
TA关注的人