pandas dataframe的多级条件操作

本文介绍了如何在Python的pandas库中使用df.loc和df.iloc进行多级筛选,并演示了如何通过列名直接赋值。同时,讲解了逻辑运算符在条件筛选中的应用,以及DataFrame列操作的基本语法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

df2['c_kPa']=1
df2['phi_deg']=1

直接引号索引表头的标题进行赋值。

执行类似excel多级筛选 如下:

df2[(df2.x==100)&((df2.y==2)|(df2.y==10))]=df1[(df2.x==100)&((df1.y==2)|(df1.y==10))]

(x==100) & ((y==2)|(y==10)). 注:&和,并; |或。

在excel中表示 先筛选x=100,接着选择y=2和y=10的数据。

df.xxx 点后面表示方法,直接接表头名字,对该列进行操作,一般接逻辑操作等。

df.iloc [: , 0] 用iloc方法对行\列数进行索引。 [行,列] 。

在进行条件行列切片时,条件的行列要用中括号,如: df.iloc [0:6, [0:20]] 取1-5行, 1-19列的数据。

df.loc[:, [ 'key' ]].    用loc方法 可以对关键字的列进行操作,注意是索引关键字。大多数时候可用iloc,除非当表头没有存放规律时。

df[ 'xxx' ] 用中括号(列表符) 加引号接表头名字,对整列进行操作,一般进行整列赋值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值