算法题 01 矩阵

542. 01 矩阵

问题描述

给定一个由 0 和 1 组成的矩阵,找出每个元素到最近的 0 的距离。
这里的距离定义为曼哈顿距离(即上下左右移动的步数),每个元素只能向上下左右四个方向移动。

示例

输入:
[[0,0,0],
 [0,1,0],
 [1,1,1]]

输出:
[[0,0,0],
 [0,1,0],
 [1,2,1]]

算法思路

方法一:多源 BFS(推荐解法)

  1. 核心思想:将所有值为 0 的位置作为起点,同时进行广度优先搜索(BFS)
  2. 从所有 0 开始向外扩散,每一轮将距离加 1
  3. 第一次访问到某个 1 时,其距离就是最短距离

方法二:动态规划(两次扫描)

  1. 第一次扫描(左上到右下):
    • 从左上角开始,向右下角遍历
    • 每个位置的距离 = min(上方距离 + 1, 左方距离 + 1)
  2. 第二次扫描(右下到左上):
    • 从右下角开始,向左上角遍历
    • 每个位置的距离 = min(当前距离, 下方距离 + 1, 右方距离 + 1)
  3. 两次扫描结合,确保考虑了所有方向的最短路径

代码实现

方法一:多源 BFS(推荐)

import java.util.*;

class Solution {
    /**
     * 计算矩阵中每个元素到最近的0的距离
     * 使用多源BFS算法
     * 
     * @param mat 输入的01矩阵
     * @return 每个位置到最近0的距离矩阵
     */
    public int[][] updateMatrix(int[][] mat) {
        int m = mat.length;        // 矩阵行数
        int n = mat[0].length;     // 矩阵列数
        
        // 结果数组,初始化为-1表示未访问
        int[][] dist = new int[m][n];
        for (int i = 0; i < m; i++) {
            Arrays.fill(dist[i], -1);
        }
        
        // 创建队列用于BFS,存储坐标对 [row, col]
        Queue<int[]> queue = new LinkedList<>();
        
        // 第一步:将所有值为0的位置加入队列,并设置距离为0
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (mat[i][j] == 0) {
                    dist[i][j] = 0;           // 0到自身的距离为0
                    queue.offer(new int[]{i, j}); // 将0的位置加入BFS队列
                }
            }
        }
        
        // 四个方向的偏移量:上、下、左、右
        int[][] directions = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
        
        // 多源BFS主循环
        while (!queue.isEmpty()) {
            int[] curr = queue.poll();  // 取出队首元素
            int row = curr[0];
            int col = curr[1];
            
            // 探索四个相邻方向
            for (int[] dir : directions) {
                int newRow = row + dir[0];
                int newCol = col + dir[1];
                
                // 检查新位置是否在矩阵范围内
                if (newRow >= 0 && newRow < m && newCol >= 0 && newCol < n) {
                    // 如果该位置未被访问过(即原来是1)
                    if (dist[newRow][newCol] == -1) {
                        // 距离 = 当前位置距离 + 1
                        dist[newRow][newCol] = dist[row][col] + 1;
                        // 将新位置加入队列,继续BFS
                        queue.offer(new int[]{newRow, newCol});
                    }
                }
            }
        }
        
        return dist;
    }
}

方法二:动态规划(两次扫描)

class Solution {
    /**
     * 使用动态规划方法计算每个元素到最近0的距离
     * 通过两次扫描确保找到全局最短距离
     * 
     * @param mat 输入的01矩阵
     * @return 每个位置到最近0的距离矩阵
     */
    public int[][] updateMatrix(int[][] mat) {
        int m = mat.length;
        int n = mat[0].length;
        
        // 初始化结果数组
        // 初始值设为m+n,因为最大可能距离不会超过m+n-2
        int[][] dp = new int[m][n];
        for (int i = 0; i < m; i++) {
            Arrays.fill(dp[i], m + n);
        }
        
        // 第一次扫描:从左上到右下
        // 只考虑从上方和左方转移
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (mat[i][j] == 0) {
                    // 如果当前是0,则距离为0
                    dp[i][j] = 0;
                } else {
                    // 如果不是边界,可以考虑从上方转移
                    if (i > 0) {
                        dp[i][j] = Math.min(dp[i][j], dp[i-1][j] + 1);
                    }
                    // 如果不是边界,可以考虑从左方转移
                    if (j > 0) {
                        dp[i][j] = Math.min(dp[i][j], dp[i][j-1] + 1);
                    }
                }
            }
        }
        
        // 第二次扫描:从右下到左上
        // 考虑从下方和右方转移,并与第一次扫描的结果比较
        for (int i = m - 1; i >= 0; i--) {
            for (int j = n - 1; j >= 0; j--) {
                if (mat[i][j] != 0) { // 只处理1的位置
                    // 如果不是边界,可以考虑从下方转移
                    if (i < m - 1) {
                        dp[i][j] = Math.min(dp[i][j], dp[i+1][j] + 1);
                    }
                    // 如果不是边界,可以考虑从右方转移
                    if (j < n - 1) {
                        dp[i][j] = Math.min(dp[i][j], dp[i][j+1] + 1);
                    }
                }
            }
        }
        
        return dp;
    }
}

算法分析

  • 时间复杂度

    • 多源BFS:O(m × n),每个元素最多入队一次
    • 动态规划:O(m × n),进行两次完整遍历
  • 空间复杂度

    • 多源BFS:O(m × n),队列最坏情况下存储所有0的位置
    • 动态规划:O(1) 额外空间(不考虑输出数组)
  • 方法对比

    • 多源BFS:逻辑清晰,易于理解,符合直观的"扩散"思维
    • 动态规划:空间效率更高,但需要理解两次扫描的必要性

算法过程

输入 [[0,0,0],[0,1,0],[1,1,1]]

多源BFS执行过程:

  1. 初始化

    • 将所有0的位置加入队列:(0,0), (0,1), (0,2), (1,0), (1,2)
    • 设置这些位置的距离为0
  2. 第一轮BFS

    • 从队列中取出所有0位置
    • 向四周扩散,找到距离为1的位置:(1,1), (2,0)
    • 将这些位置加入队列
  3. 第二轮BFS

    • 取出距离为1的位置
    • 扩散到距离为2的位置:(2,1)
    • 将该位置加入队列
  4. 第三轮BFS

    • 取出(2,1),扩散到(2,2),距离为3
    • 但实际上(2,2)会从(1,2)直接到达,距离为2

最终结果:[[0,0,0],[0,1,0],[1,2,1]]

动态规划执行过程:

第一次扫描(左上→右下)

初始:[[∞,∞,∞],[∞,∞,∞],[∞,∞,∞]]
结果:[[0,0,0],[0,1,0],[1,2,3]]

第二次扫描(右下→左上)

从(2,2)开始:
- (2,2): min(3, dp[2,1]+1=3, dp[1,2]+1=1) → 1
- (2,1): min(2, dp[2,2]+1=2, dp[1,1]+1=2) → 2
- (2,0): min(1, dp[2,1]+1=3) → 1
- (1,1): min(1, dp[1,2]+1=1, dp[2,1]+1=3) → 1

最终结果:[[0,0,0],[0,1,0],[1,2,1]]

测试用例

public static void main(String[] args) {
    Solution solution = new Solution();
    
    // 测试用例1:标准示例
    int[][] mat1 = {
        {0,0,0},
        {0,1,0},
        {1,1,1}
    };
    printMatrix("Test 1:", solution.updateMatrix(mat1));
    // 预期输出:
    // [0,0,0]
    // [0,1,0]
    // [1,2,1]
    
    // 测试用例2:全0矩阵
    int[][] mat2 = {
        {0,0},
        {0,0}
    };
    printMatrix("Test 2:", solution.updateMatrix(mat2));
    // 预期输出:
    // [0,0]
    // [0,0]
    
    // 测试用例3:全1矩阵(不可能,至少有一个0)
    // 根据题意,至少有一个0,所以不考虑这种情况
    
    // 测试用例4:单行矩阵
    int[][] mat3 = {{1,0,1,1,0}};
    printMatrix("Test 3:", solution.updateMatrix(mat3));
    // 预期输出:[1,0,1,1,0]
    
    // 测试用例5:单列矩阵
    int[][] mat4 = {{1},{0},{1},{1},{0}};
    printMatrix("Test 4:", solution.updateMatrix(mat4));
    // 预期输出:[1],[0],[1],[1],[0]
}

// 辅助函数:打印矩阵
private static void printMatrix(String title, int[][] matrix) {
    System.out.println(title);
    for (int[] row : matrix) {
        System.out.println(Arrays.toString(row));
    }
    System.out.println();
}

关键点

  1. 多源BFS的本质

    • 将所有0视为同一层的起点
    • 同时向外扩散,保证第一次到达某个1时就是最短路径
  2. 为什么需要两次扫描

    • 单次扫描只能考虑部分方向(如只考虑左上方)
    • 第二次反向扫描确保考虑了所有可能的路径
  3. 距离初始化

    • BFS中用-1表示未访问
    • DP中用较大值(m+n)表示无穷大
  4. 边界处理

    • 注意数组越界检查
    • 0的位置距离始终为0

常见问题

  1. 为什么BFS能保证是最短距离?

    • 因为BFS按层扩展,第一次访问到某个节点时的层数就是最短距离
    • 多源BFS相当于从多个起点同时开始的BFS
  2. DP方法中为什么初始值设为m+n?

    • 在m×n的矩阵中,任意两点间的最大曼哈顿距离不超过m+n-2
    • 设为m+n可确保大于任何实际距离,起到"无穷大"的作用
  3. 能否用普通BFS逐个计算?

    • 可以,但时间复杂度会达到O((mn)^2),效率很低
    • 多源BFS将时间复杂度优化到O(mn)
  4. 四种方向偏移量的作用?

    • {-1,0}:向上移动
    • {1,0}:向下移动
    • {0,-1}:向左移动
    • {0,1}:向右移动
    • 这种表示法简洁且易于遍历
  5. 两种方法的选择

    • 多源BFS:推荐,逻辑清晰,容易理解和调试
    • 动态规划:空间效率略高,适合对空间要求严格的场景
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值