
模型
文章平均质量分 87
藓类少女
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【自然语言处理】GPT模型
GPT是一种基于Transformer架构的生成式预训练语言模型,依靠大规模的数据训练,能够生成高质量的自然语言文本。随着版本的迭代,GPT在任务泛化能力、少样本学习、文本生成质量等方面取得了显著进展。尽管其在推理能力和偏见问题上仍有改进空间,但其广泛的应用场景已经使其成为自然语言处理领域的核心技术之一。原创 2024-10-22 18:12:01 · 1465 阅读 · 0 评论 -
【自然语言处理】BERT模型
BERT 是一种强大的自然语言处理模型,广泛应用于文本理解、问答、分类等任务。它通过。原创 2024-10-22 17:55:36 · 1278 阅读 · 0 评论 -
【模型】感知器
随着多层感知器(Multi-Layer Perceptron, MLP)和反向传播算法(Backpropagation)的发展,神经网络克服了单层感知器的不足,能够解决更复杂的非线性问题。Rosenblatt 的感知器模型被视为现代深度学习的前身,其理念和方法在今天依然具有重要的学术价值和实际应用意义。虽然感知器模型在处理复杂任务时受到限制,但它的提出为后续多层神经网络、卷积神经网络(CNN)、循环神经网络(RNN)等复杂结构的设计提供了重要的参考和启发。感知器是最早尝试模拟人脑神经元功能的计算模型之一。原创 2024-09-24 18:05:32 · 1337 阅读 · 0 评论 -
【模型】Temporal Fusion Transformer (TFT) 模型
Temporal Fusion Transformer (TFT) 模型是一种专为时间序列预测设计的高级深度学习模型。它结合了神经网络的多种机制来处理时间序列数据中的复杂关系。TFT 由 Lim et al. 于 2019 年提出,旨在处理时间序列中的不确定性和多尺度的依赖关系。TFT 模型的架构结合了以下几个主要组件:输入层和嵌入层:Variable Selection Network(变量选择网络):LSTM编码器/解码器:自注意力机制(Self-Attention Mechanism):Gated R原创 2024-08-26 18:04:21 · 3754 阅读 · 0 评论 -
【模型】VotingRegressor
是一个集成学习模型,属于 Scikit-learn 库中提供的集成方法之一。它的主要思想是通过结合多个基于不同算法的回归模型来提高预测性能。这些基础模型各自做出预测,然后会对它们的输出进行加权平均(或直接平均),最终给出一个集成的预测结果。原创 2024-08-16 19:30:52 · 618 阅读 · 0 评论 -
【模型】XGBoost
XGBoost 基于梯度提升框架,它通过逐步构建一系列弱学习器(通常是决策树),每一个新的学习器都试图纠正前一个学习器的错误。: 传统的 GBDT 在生成树时是串行的,而 XGBoost 可以通过并行计算优化树结构的部分操作,从而显著提高训练速度。: XGBoost 的正则化机制和内置的处理缺失值能力,使得它在复杂的、噪声较多的数据集上也能表现良好。: 在预测阶段,XGBoost 使用每棵树的输出通过加权投票来做最终预测,从而提升模型的准确性。增加这个值可以提高模型的复杂度,但也增加了过拟合的风险。原创 2024-08-15 18:53:30 · 1155 阅读 · 0 评论 -
【模型】TFLiteModel
TensorFlow Lite 提供了一种将 TensorFlow 模型部署到移动设备、嵌入式设备和物联网设备的轻量级解决方案。通过模型转换、优化和部署,TFLite 模型能够在资源受限的环境中高效运行,并支持各种硬件加速选项,如 GPU、DSP 和 Edge TPU。这使得 TFLite 成为在边缘计算设备上运行机器学习模型的理想选择。原创 2024-08-13 18:03:26 · 1569 阅读 · 0 评论 -
【对抗性训练】FGM、AWP
FGM 是一种快速生成对抗样本的方法,通过对输入样本施加小的扰动,使得模型在原始样本上的预测信心大幅下降,从而产生对抗样本。FGM 的目标是找到一个微小的扰动,使得模型对样本的预测结果发生改变。FGM 是 FGSM(Fast Gradient Sign Method)的简化版本,它的原理相同,但省去了符号函数的应用。AWP 是一种通过扰动模型参数来提升模型鲁棒性的方法。与 FGM 不同,AWP 并不直接在输入样本上施加扰动,而是在模型参数空间中引入扰动。原创 2024-08-13 17:40:53 · 1741 阅读 · 0 评论 -
【模型】ResNet
ResNet(Residual Network,残差网络)是一种用于图像识别等任务的深度神经网络架构,由何凯明等人于2015年提出。它在计算机视觉领域中具有重要意义,因为它解决了随着网络层数加深而导致的“梯度消失”或“梯度爆炸”问题,使得训练非常深的神经网络成为可能。ResNet 在多个图像识别任务中取得了显著的性能提升,并在 ImageNet 竞赛中获得了第一名。原创 2024-08-13 16:56:01 · 1184 阅读 · 0 评论 -
【模型】DenseNet
DenseNet(密集连接卷积网络)是一个深度卷积神经网络,它通过在网络中的各层之间建立密集连接来改进梯度传播、特征复用和网络参数的高效利用。DenseNet 模型的关键特征包括:密集连接:特征复用:紧凑网络:过渡层:生长率(Growth Rate):DenseNet 的优点:DenseNet 的缺点:总的来说,DenseNet 提供了一种通过密集连接和特征复用来构建高效、紧凑且性能优越的深度卷积神经网络的方法。构造 DenseNet 模型涉及以下几个关键步骤:定义 Dense Block、定义 Trans原创 2024-08-01 19:10:24 · 1227 阅读 · 0 评论 -
【模型】timm库
是一个用于深度学习的开源库,全称是 “PyTorch Image Models”。该库由 Ross Wightman 创建并维护,旨在提供高效且易于使用的图像模型,包括大量预训练的模型和实用工具。(PyTorch Image Models)库包含了众多预训练的图像分类模型,这些模型在各种流行的数据集上进行了训练。这些预训练模型已经在ImageNet等大型数据集上进行了训练,因此在迁移学习任务中通常表现良好。选择适合你任务的模型架构,可以加快训练过程,并提高模型的性能。可以通过以下代码查看。原创 2024-08-01 18:43:29 · 2483 阅读 · 0 评论 -
【模型】VotingClassifier
VotingClassifier 是一个用于集成学习的分类器,它结合了多个不同模型的预测结果,以提高整体的预测准确性和稳定性。集成学习的基本思想是通过结合多个弱分类器来创建一个强分类器。VotingClassifier 是 scikit-learn 库中的一个类,支持多种分类模型的集成。原创 2024-07-30 18:41:07 · 1099 阅读 · 0 评论 -
【模型】CatBoost
CatBoost 是一种高效的梯度提升决策树(GBDT)算法,由俄罗斯科技公司 Yandex 开发。它特别擅长处理分类特征和小数据集,在许多机器学习竞赛和实际应用中表现出色。原创 2024-07-30 18:38:07 · 808 阅读 · 0 评论 -
【模型】LightGBM
LightGBM 是一种基于决策树算法的梯度提升框架,专为快速高效的模型训练和预测设计。它由微软开发,并且广泛应用于各种机器学习任务,尤其在结构化数据和分类问题上表现出色。原创 2024-07-30 18:29:27 · 1865 阅读 · 0 评论