图文结合大白话讲解树的发展

本文介绍了如何通过有序二叉树和平衡二叉树(如红黑树)解决数组下标重复问题,重点讲解了红黑树的构造、旋转原理及其在数据查找中的优势,最终以2-3-4树和红黑树的结合优化查找效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

众所周知我们如果想要直接遍历无序数组它的时间复杂度为O(n)级别,但是当数据量达到一定地步的时候O(n)显的也很大,那么我们应该怎么来降低它的时间复杂度呢?比O(n)级别更低的时间复杂度也只有O(1)和O(logn)了

一、时间复杂度为O(logn–)折半查找

提起O(logn)我们的第一想法就是循环减半,但是折半查找虽然为O(logn)的时间复杂度,但是它的前提是有序数组,我们在八大排序中时间复杂度最低的也是O(nlogn)级别,所以折半查找肯定不可取。
在此我就不对折半查找和八大排序进行相应的基础普及了有兴趣可以看我其他系列的文章
折半查找描述

一、时间复杂度为O(1)–数组

既然O(logn)的时间复杂度不可取,那么只剩下O(1)的时间复杂度了。我们最经常接触的O(1)的时间复杂度的数据结构那么肯定就是数组了。既通过下面来获取数据

通过n%arr.length来存储和获取下标

但是如过通过这样的算法来获取下标的话,余数相同的数的就会产生相互覆盖的问题。那么怎么来解决这个问题呢?

使用多维数组来解决

为了解决下标相同的问题,我们第一个能想到的就是使用多维数组来解决这个问题,但是每次新添加数据的时候都要重新开辟内存空间,而且有的余数下面挂的长有的余数下面挂的短。所以不可取

使用链表来解决

链表示意图
为了解决下标相同的问题在数组上挂上链表,如果使用链表来解决的话确实可以简单解决相应的问题,但是链表想要遍历的时间复杂度也为O(n)所以链表的想法也被淘汰掉

使用树来解决

有序二叉树

为了解决链表的时间复杂度问题,将链表换成树(有序二叉树–左边节点值效域父亲节点,右边节点值大于父亲节点),他们本身的时间复杂度就是O(logn)。
数组
下面就是通过上方数组构成的有序二叉树
有序二叉树
但是又一个新的问题出现了例如下面的两个有序二叉树
在这里插入图片描述
很明显他们的查找时间复杂度不可能是O(logn)级别的,所以有序二叉树是不稳定的。只是理论来说是是logn,但是真实情况下一般都是O(logn)-O(n)不稳定。

平衡二叉树

为了解决有序二叉树的不稳定性我们引入平衡二叉树既在有序二叉树的基础上要求左右子树的高度差的绝对值不能超过1。如果超过1了那么就要对它进行旋转。
在此科普一下关于平衡二叉树旋转的小知识。
一旦出现左右子树高度差大于1的情况就需要进行平衡调整(LL 、LR、RL、RR)----方法为没事走两步
LL型旋转既向左走了两个为两个L,那么将3的左子树当作中间节点,3变为其右节点
在这里插入图片描述
RR型旋转既向右走了两个为两个RR,那么将1的右子树当作中间节点,1变为其左节点
在这里插入图片描述
LR型旋转既后两个先做整体旋转变换为LL型旋转,再根据LL型旋转进行旋转
在这里插入图片描述
RR型旋转既后两个先做整体旋转变换为RR型旋转,再根据RR型旋转进行旋转
在这里插入图片描述
缺点:它虽然能保持每次都是O(logn)的时间复杂度但是每次不平衡都要旋转,转转太复杂,耗费计算机性能。
那么如何降低计算机性能?
提起降低计算机性能我们不得不提出我们的内存最优树,红黑树
它能在保持稳定性的前提下,又能保证计算机性能耗费不高还能降低时间复杂度为O(logn)
提起红黑树我们不得不大概讲解一下2-3-4树

2-3-4树

在这里插入图片描述
他有三种节点,并且它的构建是从下往上构建的所以下面的节点一定是处于同一层上,不可能出现不同层
在这里插入图片描述
它的形式大概是
在这里插入图片描述
我们在2-3-4树的基础上来构建红黑树
红黑树有三种节点
从左往右分别为一节点转换、二节点转换、三节点转换
在这里插入图片描述
将上方的2-3-4树按照上方节点的转换方法我们可以得到一个红黑树
在这里插入图片描述
并且总结其特点
1、红黑树不是红色就是黑色
2、红黑树当中跟节点一定是黑色的
3、叶子节点是黑色的
4、从根节点到所有的叶子节点,所走过的黑色节点的数量相同
因为二三四树是从下往上构建的,所以层数是相同的,因为一个节点最多分成俩层,一个黑色节点就代表一层。
5、如果一个节点是红色的那么他的子节点一定是黑色的
最多分成两层,所以每个节点开头一定是黑色节点
---->绝对没有成对出现的红色节点(黑红,黑红,黑红)---->最长:黑红黑红黑红,最短—>黑黑黑
由–>4、5得到最长的路径绝对没有超过最短路径的2倍(红黑树稳定的基石)

总结

所以我们将红黑树作为下方的数组下方的挂载,其实际复杂度非常低。计算机的发展就是出现什么解决问题。上方就是我对树发展的理解,如果有错请指正我会及时更改谢谢。

<think>嗯,用户让我用大白话解释Git是什么。之前我已经给过比较专业的解释,但用户这次特别强调要通俗易懂,还提供了几个引用资源,都是强调"小白视角"和"大白话"的。 用户可能是个编程新手,或者之前被专业术语吓到过。ta提到的引用[1]里说"看过就忘""苦不堪言",引用[2][3]都反复强调"大白话",说明用户需要完全避开技术黑话。 我注意到上次回答虽然全面,但用了"分布式版本控制""SHA-1哈希"这类术语。这次得彻底转化:把Git比喻成游戏存档系统可能不错,因为存档/读档是常见体验。引用[2]提到"git和github是两码事"这点很重要,很多新手会混淆。 核心要点应该是: - 版本控制=游戏存档(随时保存不怕玩砸) - 分支=平行宇宙(实验性操作不毁原世界) - 远程仓库=云存档(多设备同步+队友共享) 避免提到任何命令,重点说清概念。用户引用[3]提到"跳过理论直接讲命令行"的问题,所以这次连git add/commit这些基础命令都先不提,纯讲原理。 最后用"写小说改稿子"的生活化场景收尾,这样哪怕完全不懂编程的人也能理解。相关问题的设计也要延续这个风格,比如"手滑删错文件怎么找回"这种实际痛点。</think>好的,咱们用最直白的大白话来聊聊 Git 是什么,就像聊天一样: **想象一下你在写一篇重要的小说(或者做一份重要的报告、设计一个图纸):** 1. **你会不断修改:** 今天写一章,明天觉得不好删掉重写,后天又想加个人物。 2. **你会担心出错:** 万一改了半天,发现还是之前的好,想找回来怎么办?万一不小心删掉了重要段落怎么办? 3. **你可能需要和别人合作:** 比如你和朋友一起写,你写一部分,他写一部分,最后怎么合到一起? **Git 就是帮你解决这些头疼问题的超级智能“时光机”+“协作神器”!** **它具体能干啥?** 1. **📸 自动“拍照存档”(版本控制):** * 每当你觉得写到一个不错的地方(比如完成一小节、修复了一个bug),你就可以告诉 Git:“嘿,给我现在这个状态拍个快照存起来!” * 这样,**无论你后面怎么改、怎么删、甚至改得一塌糊涂,你随时都能“回到”之前拍过的任何一个快照的状态**。就像游戏存档一样,玩砸了还能读档重来!再也不用怕改错了东西找不回来。[^1][^3] 2. **🌳 开“平行宇宙”做实验(分支管理):** * 你想尝试一个大胆的新剧情(或者一个新功能),但又怕把现在好好的稿子搞乱? * Git 可以让你**瞬间复制一份当前的小说副本(创建一个“分支”)**,在这个安全的“平行宇宙”里随便折腾。改好了,满意了,再把“平行宇宙”里的成果合并回主稿子;改砸了?直接把这个分支删掉,主稿子完全不受影响![^1][^3] 3. **🤝 和别人一起写不打架(团队协作):** * 你和朋友都要写同一篇小说。Git 提供了一个**公共的“云盘”(远程仓库,比如 GitHub、GitLab 等)**。 * 你先把你写好的部分存到本地 Git 仓库(拍照存档),然后**“上传”(push)** 到云盘上。 * 你的朋友就能**“下载”(pull)** 你写的最新内容到他自己的电脑上。 * 他改完他那部分,也拍照存档,再上传到云盘。 * 这样你们就能互相看到对方的进度和修改,Git 还会尽量帮你们**自动合并**各自的修改。万一你们改到了同一句话(冲突),Git 也会标出来让你们商量着解决。[^2][^4] 4. **🔒 保证稿子安全(数据完整性):** * Git 给每次“拍照存档”都生成一个**独一无二的“指纹”**。一旦存档,里面的内容就**不可能被悄悄篡改**。如果有人改了,指纹就对不上了,马上就能发现。[^3] **总结一下,Git 是啥?** * **一个超级智能的“时光机”**:随时回到你作品的任何一个历史版本。 * **一个安全的“实验沙盒”**:让你在“平行宇宙”里大胆尝试新想法,不影响主线。 * **一个高效的“团队协作工具”**:让大家安全地一起修改同一份作品,互相能看到进度,自动合并修改。 * **一个可靠的“历史记录本”**:完整记录作品的每一次变化,保证记录真实可靠。 **简单说:Git 就是帮你管理文件(尤其是代码)所有修改历史,并且让你能安全、方便地和别人一起干活的神奇工具!** 它本身是个软件(工具),而 GitHub 这类网站是提供存放你 Git 仓库的“云盘”服务(仓库)。[^2][^3] --- **
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值