一、MapReduce 跑得慢的原因
1、计算机性能
CPU、内存、磁盘健康、网络
2、I/O 操作优化
(1) 数据倾斜
(2) Map 和 Reduce 数设置不合理
(3) Map 运行时间太长,导致 Reduce 等待过久
(4) 小文件过多
(5) 大量的不可分块的超大文件
(6) spill 次数过多
(8) Merge 次数过多等
二、MapReduce 优化方法
MapReduce 优化方法主要从六个方面考虑:数据输入、Map 阶段、Reduce 阶段、IO 传输、数据倾斜问题和常用的调优参数。
2.1 数据输入
1、合并小文件:在执行 MR 任务前将小文件进行合并,大量的小文件会产生大量的 Map 任务,增大 Map 任务装载次数,而任务的装载比较耗时,从而导致 MR 运行较慢。
2、采用 CombineTextInputFormat 来作为输入,解决输入端大量小文件的场景。
2.2 Map 阶段
1、减少溢写(Spill)次数:通过调整 io.sort.mb 及 sort.spill.percent 参数值,增大触发 Spill 的内存上限,减少 Spill 次数,从而减少磁盘 IO。
2、减少(Merge)次数:通过调整 io.sort.factor 参数,增加 Merge 的文件数目,减少 Merge 的次数,从而缩短 MR 处理时间。
3、在 Map 之后,不影响业务逻辑的前提下,先进行 Combine 处理,减少 IO。
2.3 Reduce 阶段
1、合理设置 Map 和 Reduce 数目:两个都不能设置太少,也不能设置太多。太少,会导致 Task 等待,延长处理时间;太多,会导致 Map、Reduce 任务间竞争资源,造成处理超时等错误。
2、设置 Map、Reduce 共存:减少 slowstart.completedmaps 参数,使 Map 运行到一定程序后,Reduce 也开始运行,减少 Reduce 的等待时间。
3、规避使用 Reduce:因为 Reduce 在用于连接数据集的时候会产生大量的网络消耗。
4、合理设置 Reduce 端的 Buffer:默认情况下,数据达到一个阈值的时候,Buffer 中的数据就会写入磁盘,然后 Reduce 会从磁盘中获得所有的数据。也就是说,Buffer 和 Reduce 是没有直接关联的,中间多次写磁盘->读磁盘的过程,既然有这个弊端,那么就可以通过参数来配置,使得 Buffer 中的一部分数据可以直接输送到 Reduce,从而减少 IO 开销:mapreduce.reduce.input.buffer.percent,默认为 0.0。当值大于 0 的时候,会保留指定比例的内存读 Buffer 中的数据直接拿给 Reduce 使用。这样一来,设置 Buffer 需要内存,读取数据需要内存,Reduce 计算也要内存,所以要根据作业的运行情况来进行调整。
2.4 IO 传输
1、采用数据压缩的方式,减少网络 IO 的时间。安装 Snappy 和 LZO 压缩编码器。
2、使用 SequenceFile 二进制文件。
2.5 数据倾斜问题
1、数据倾斜现象
数据频率倾斜 – 某一个区域的数据量要远远大于其他区域。
数据大小倾斜 – 部分记录的大小远远大于平均值。
2、减少数据倾斜的方法
2.6 常用的调优参数
三、HDFS 小文件优化方法