PyTorch如何加载数据集(自定义数据集)

pytorch加载数据集主要分为两种方法:

1、所使用数据集已被集成在pytorch内,如:CIFAR-10,CIFAR-100,MNIST等等。对于这种数据集,可以直接使用pytorch内置函数:torchvision.datasets.CIFAR100来直接加载,比较方便。例程如下:

transform_train = transforms.Compose([
    #transforms.ToPILImage(),
    transforms.RandomCrop(32, padding=4),
    transforms.RandomHorizontalFlip(),
    transforms.RandomRotation(15),
    transforms.ToTensor(),
    transforms.Normalize(mean, std)
])
cifar100_training = torchvision.datasets.CIFAR100(root='./data', train=True,
												  download=True, transform=transform_train)
cifar100_training_loader = DataLoader(
        cifar100_training, shuffle=shuffle, num_workers=num_workers, batch_size=batch_size)

2、所使用数据集为被集成,这个类别是本文的主要讲述内容。

加载自定义数据集(即未被集成在pytorch内)

对于自定义数据集pytorch实际上是有一个函数的:torchvision.datasets.ImageFolder(),但是此函数只能加载特定形式的数据集(图片已被分类好,并放在相应文件夹下了,其标签就是其上层目录的名称,在下面会解释为什么)。有时候我们需要使用的数据集可能不是这样的,其标签可能不在目录上,而在一个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值