基于 STL+VMD 二次分解的 Informer-LSTM 并行预测模型详解与案例

一、背景与动机

在时间序列预测中,如电力负荷、风速、交通流量等复杂数据常表现为:

  • 非线性:趋势+季节+突变+噪声

  • 多尺度:高频扰动与低频变化共存

  • 长时依赖:远期信息也影响当前预测

传统模型(如 ARIMA、LSTM)往往无法兼顾全局趋势建模局部扰动感知,因此我们提出一种 “二次分解 + 并行建模”的复合框架

STL + VMD + Informer & LSTM 并行建模,整合两者优势。


二、模型架构概览

整套框架分为五步:



三、STL+VMD 二次分解模块详解

1. STL(Seasonal-Trend decomposition using Loess)

**作用:**将序列分解为:

  • T(t):趋势部分(长周期平稳变化)

  • S(t):季节项(周期性波动)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

非著名架构师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值