疾风气象大模型与灾害预警:原理、方法与代码实现

气象大模型正深刻改变着传统气象灾害预警的方式。本文将系统介绍气象大模型的技术原理、在灾害预警中的应用,并详细展示关键算法的代码实现过程,包括数据预处理、模型构建、训练优化等完整流程。

一、气象大模型技术架构

1.1 物理机制与AI融合模型

典型的物理约束深度学习模型架构如下:

import torch
import torch.nn as nn
from torch.nn import functional as F

class PhysicsGuidedNN(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim):
        super().__init__()
        # 特征提取层
        self.encoder = nn.Sequential(
            nn.Conv3d(input_dim, 64, kernel_size=(3,3,3), padding=1),
            nn.ReLU(),
            nn.MaxPool3d(2),
            nn.Conv3d(64, 128, kernel_size=(3,3,3), padding=1),
            nn.ReLU()
        )
        # 时序预测模块
        self.transformer = nn.Transformer(
            d_model&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

非著名架构师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值