自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(804)
  • 收藏
  • 关注

原创 大模型知识库问答系统评估体系搭建:从技术指标到业务监控全流程解析

本文详细介绍了基于AI大模型的知识库问答系统评估体系构建方法,包括多维评测体系(业务、技术、安全)、关键评估指标解读、评测数据集构建、评测方案设计(自动化、人工、ABTest)、Badcase分析与迭代策略,以及评估结果可视化与监控看板搭建。通过系统化的评估方法,可有效解决大模型幻觉问题,提高知识库问答系统的准确性、完整性和用户体验,助力打造智能、稳定、高效的AI产品。

2025-09-12 10:16:03 725

原创 大模型应用开发:Dify+RAGFlow知识库集成实现精准检索的实战指南

本文详细介绍了如何在Dify平台上集成RAGFlow知识库,通过创建知识库、配置API KEY、连接外部知识库等步骤,实现两种工具的优势互补。这种集成方式充分利用了Dify的工作流能力和RAGFlow优秀的知识库构建与召回功能,解决了Dify文档解析不足的问题,让开发者能够构建更精准、更强大的大模型应用。

2025-09-12 10:14:12 801

原创 大语言模型智能体全面解析:架构、组件与协作框架

大语言模型智能体(LLM Agent)通过语言作为通用接口,实现了从专用系统到通用助手的跨越。与传统专门化AI不同,LLM Agent具有通用化、语言驱动和强推理能力特点,由感知系统、大语言模型、规划系统等7个核心组件构成。多智能体协作框架如AutoGen(对话驱动)和CrewAI(角色分工)代表两大设计范式,通过智能体间协作解决复杂问题,标志着AI发展的重要方向。

2025-09-11 19:19:43 1026

原创 多模态大模型完全指南:从通用大脑到业务专家的实战之路

多模态大模型(MLLM)实现跨模态深度理解与融合分析,企业可通过提示工程、检索增强生成(RAG)、微调和预调等方法论,将通用模型训练为业务专家。建议企业从精准场景切入,小步快跑,逐步构建专属多模态业务智能系统,实现从"人分析数据"到"AI自主洞察"的转变,抢占智能升级高地。

2025-09-11 19:18:53 804

原创 2025必学!AI大模型数据治理体系实战指南(附交付物)

本文系统分析2025年AI大模型技术趋势与企业数字化转型痛点,提供制造业、金融、医疗等多行业落地案例。详细阐述技术选型、人才培养和生态合作三大转型策略,以及应对数据治理、模型部署、组织变革等挑战的方法。AI大模型正从"工具化"迈向"智能化+产业化"深度融合,成为企业数字化转型的核心基础设施和战略资产。

2025-09-10 19:12:23 1104

原创 大模型本地部署完全指南:从零开始的保姆级教程

本文详细介绍大模型本地部署的入门教程,包括基础条件、部署优势(数据隐私、离线运行等)及LM Studio的具体部署步骤。指导读者下载安装软件、访问模型资源库、选择适合自己电脑配置的模型,并推荐了几款实用模型。适合有一定电脑基础但想体验大模型本地运行的读者。

2025-09-10 19:09:46 1064

原创 智能体驱动的RAG系统构建:从数据预处理到效果评估全流程

本文详细介绍了如何构建生产级智能体驱动RAG系统,以工业设备维修手册为例,展示了从数据预处理(多策略分块、清洗、摘要生成)到核心流程构建(智能体规划、检索与蒸馏、思维链推理)的全过程。系统通过LangGraph实现规划与反思能力,结合RAGAS进行量化评估,形成能处理复杂问题、抑制幻觉的高效知识问答系统,为开发者提供从原型到生产级系统的完整实践路径。

2025-09-05 16:05:06 855

原创 AI Agent工作流程深度剖析:让大模型自主思考、规划与执行的奥秘

AI Agent是一种能像人类助理一样主动理解目标、规划任务、使用工具并持续学习的AI系统。其核心工作流程包括感知理解、规划决策、执行行动、观察评估、反思学习和输出沟通的闭环循环。目前AutoGPT、LangChain、AutoGen等框架已推动Agent从实验走向实用,在客服、编程、数据分析等领域展现出巨大潜力,未来将更广泛融入工作生活。

2025-09-05 16:02:49 1216

原创 大模型本地部署教程:ollama工具使用详解,适合小白和程序员

文章主要介绍了大模型本地部署的重要性和方法,重点讲解了ollama这一小巧简单的部署工具。文章详细说明了ollama的特点(多平台支持、多种交互接口)、安装步骤、模型下载方式以及API接口使用,帮助开发者在本地环境中快速部署大模型,特别适合学习和小规模开发测试使用。

2025-09-04 17:26:39 965

原创 AI Agent实战:如何自动化生成Helm Chart?程序员必学指南

本文分享了作者利用AI Agent实现开源应用Helm Chart自动化生成的探索历程。从"全自主决策"Agent的失败,到"结构化工作流"Agent的成功实现,最后提出"多Agent协作"架构。文章总结了Agent设计的核心原则:结构化上下文、单一职责、外部化状态管理等,并分享了AI可观测性、Prompt工程等实践挑战,为AI Agent在工程领域的应用提供了宝贵经验。

2025-09-04 17:25:33 690

原创 大模型应用开发:从入门到精通的实践之路——RAG与智能体架构详解

大模型应用开发理论简单但实践困难。RAG系统需平衡数据召回的广度与精准度,同时应对数据量增长带来的速度挑战。智能体系统的核心是模型推理与工具调用能力,可通过ReAct模式激发逻辑思维和纠错能力。大模型应用入门容易,但要做好需要深厚的技术、架构和工程化支持。

2025-09-03 17:25:59 992

原创 5大大模型长期记忆框架详解,让AI拥有“记忆“能力

本文详细介绍了五种增强大语言模型长期记忆能力的创新框架:TIM、CoPS、MaLP、MemoryBank和HippoRAG。这些框架受人类记忆机制启发,通过引入长期记忆系统,使大模型能够存储历史交互、用户偏好等信息,实现自我进化。各框架分别采用记忆内思考、认知个性化搜索、双过程增强记忆、艾宾浩斯遗忘曲线模拟和海马体索引理论等不同方法,有效解决了模型在长期交互中的记忆衰退问题,提升了AI的个性化服务和连贯响应能力。

2025-09-03 17:21:37 1152

原创 【必学收藏】Agentic RAG:大模型检索增强生成的革命性突破,彻底改变传统RAG

本文介绍了传统RAG系统的局限性,详细阐述了Agentic RAG如何通过引入AI代理组件实现动态检索、自我更正和多步推理等功能,解决传统RAG在处理复杂查询、数据分块、嵌入模型和上下文管理等方面的不足。文章对比了两者的差异,展示了Agentic RAG在处理复杂查询和动态数据时的优势,并提供了使用Python和LangGraph构建系统的示例代码,指出Agentic RAG并未取代向量数据库,而是将其整合进更智能的生态系统。

2025-09-01 17:45:05 717

原创 大模型开发新思路:Agentic RAG技术详解与实战案例,收藏不亏

本文介绍了Agentic RAG技术,通过智能体实现无需向量化检索的轻量级大模型应用。以餐厅推荐系统为例,展示如何从用户输入提取参数,通过纯Python条件过滤结构化数据检索结果,再由大模型生成友好回复。相比传统RAG,Agentic RAG节省算力存储开销,灵活扩展性强,无需复杂基础设施即可快速验证智能推荐核心流程,适合中小规模数据场景。

2025-09-01 17:43:05 777

原创 《打造你的AI第二大脑:WPS知识库全攻略(建议收藏)》

文章介绍生成式AI时代如何通过WPS知识库构建"第二大脑",包括上传文档创建知识库、智能问答和内容抽取等功能应用。帮助用户高效管理海量信息,打造个人知识系统,提升工作效率,是AI时代专业人士必备技能。

2025-08-30 16:31:30 940

原创 【建议收藏】法律大模型DeepSeek实战:为什么我不建议本地部署?程序员必看避坑指南

DeepSeek-R1法律大模型虽对法律服务行业有颠覆性影响,但作者通过实践发现三个关键问题:未经专门训练的大模型法律检索错误频发;技术迭代速度快,部署后仍需频繁升级;本地部署硬件与训练成本高昂。因此,作者建议普通律师暂缓本地部署,转而关注未来可能出现的针对法律行业的蒸馏版本AI工具,同时掌握法律AI应用技能将成为律师职业发展的关键方向。

2025-08-30 16:29:43 885

原创 大模型微调入门指南:从ChatGPT到LoRA实战(含完整代码,建议收藏)

本文详细介绍了大模型微调(Fine-tuning)的基本概念、重要性和应用场景。从GPT到ChatGPT的演进过程中,微调扮演了关键角色。文章重点解释了LoRA技术原理及如何使用LoRA高效微调模型,通过代码实例展示了微调流程和注意事项。微调可强化模型特定任务能力、提高性能、避免数据泄露并降低成本,技术门槛不高,即使是10B以下模型,非专业人员也可尝试。

2025-08-29 17:43:48 786

原创 在生命科学领域,大模型RAG架构对医疗保健有何影响?

检索增强生成 (RAG) 架构通过整合实时数据,显著提升了大型语言模型 (LLM) 在医疗保健领域的准确性和实用性,为临床决策支持、虚拟医疗和医学研究等应用带来了变革。

2025-08-29 17:13:05 1013

原创 一文带你提示词工程入门

最近,ChatGPT、文心一言等大语言模型(LLM)爆火,无数人惊叹于它们“无所不能”的能 力:写文案、做PPT、解数学题、甚至帮你写代码……但你有没有想过一个问题:为什么同样 的大语言模型,有时候你问它“写篇文章”,它能妙笔生花;有时候问它“解释一个概念”,它 却答非所问?

2025-08-27 19:03:32 828

原创 AI智能体提示词工程的系统化学习,从LangChain到LangGraph

AI 的世界正在飞速演变,从简单的问答系统升级成了复杂、多步骤推理的智能代理。不管你是想打造客服机器人、数据分析工具,还是复杂的自动化工作流程,掌握 LangChain 和 LangGraph 的提示工程(Prompt Engineering)是你成功的关键!

2025-08-27 19:01:47 1025

原创 一文搞懂提示词工程和提示词之间的关系

网上充斥着各种类型的提示词模板,也有大量的文章在写提示词工程,而且在招聘网站上提示词工程师的薪水还非常的高。那么提示词和提示词工程到底有什么区别呢?为什么提示词工程师的薪水会非常的高呢?

2025-08-25 10:18:18 797

原创 每个大模型开发者必须要掌握的技术——提示词工程

不知道大家有没有这种感觉,就是在我们使用AI助手的时候,它们有时候表现的像个天才、无所不会,有时候又变成了“人工智障”、答非所问?我们用的越多、就越能发现一个规律:那就是我们发送的信息越具体、越丰富,AI的回答就越准确、越接近我们心中所想。

2025-08-25 10:13:19 1049

原创 基于RAGFlow + DeepSeek,手把手教你完全本地化部署本地知识库

部署本地知识库的工具有很多,RAGFlow、FastGPT、DIFY、AnythingLLM等,他们各有特点,本文以RAGFlow为例。本次是在Windows操作系统中进行的部署。

2025-08-22 10:13:25 1360

原创 2025大模型面试八股文一网打尽

博主最近比较闲,帮同学们精心整理一份面向 2025年校招/社招 的大模型(LLM)面试“八股文”及高频考点梳理。这份资料不仅涵盖了经典基础,更重点加入了 2025年可能考察的前沿技术(如MoE、Agent、多模态、推理等),帮助你应对更高阶的面试挑战。

2025-08-22 10:06:31 626

原创 推理模型大火,我们还需要提示词吗?

最近,随着DeepSeek-R1等推理型大模型的火爆,很多开发者纷纷表示:“推理模型已经这么强了,我们还需要提示词吗?”但实际上,提示词不仅没有失去价值,反而随着推理模型的出现迎来了新的变化。

2025-08-21 12:06:04 1004

原创 一文分清“提示词” 、 “提示词工程” 与“上下文工程”

很多人分不清楚什么是“提示词”(Prompt),什么是“提示词工程”(Prompt Engineering),现在还又多了一个概念叫“上下文工程”(Context Engineering),这又和“提示词工程”什么区别?

2025-08-21 12:01:24 596

原创 六大模型应用场景设计方案总结

公系统AI智能化1.Deepseek+流程管理1)快速查找流程:使用者输入需求描述(如"明天出差去重庆培训两天"),AI自动推荐最匹配的流程模板(如《出差申请单》),显示发起当前流程的需提供资料以及相关要求,提高员工找流程效率,降低员工发起流程的学习与沟通成本。

2025-08-20 19:17:39 632

原创 Agent产品深度体验总结:不是大模型外壳,而是交互范式重塑

Agent,不只是大模型的外壳,而是一次交互范式的重塑。从设计理念到系统实践,从分工逻辑到未来场景,本文梳理 Agent 的发展脉络与应用逻辑,是一次关于“从能力到体验”的思维跃迁图谱。

2025-08-20 19:05:58 1005

原创 提示词工程和上下文工程有什么本质区别?不懂或许是因为你没看这篇!

大语言模型(LLM)这两年的进化速度,有点像坐高铁。刚开始,大家都在研究怎么用一句话“撬动”模型,提示词工程(Prompt Engineering)应运而生,成了热门话题。但当LLM不再只是问答工具,而是走向复杂智能体(Agent)的核心引擎时,问题就来了:光靠提示词,已经撑不起生产级AI系统。于是,一个更宏观、更系统的新领域出现了——上下文工程(Context Engineering)。

2025-08-15 20:12:43 785

原创 一文解AI: 如何写智能体提示词

这是一种针对大语言模型(LLM)应用,通过测试、评估、分析以及优化提示词和工具,系统性改进提示词的实践。是用自然语言进行编程!提示工程往往也是概念工程——确定模型预期行为,界定任务中“表现良好”的含义,传递清晰概念。涉及的部分技能示例:清晰、明确、精准的文字表达以科学思维创建评估体系,持续开展测试产品思维——你的产品理想的模型行为是怎样的? 了解大语言模型,知晓其特点与局限 汇总并分析失效模式,思考修复办法 考量边缘案例,想办法让提示词能应对各类广泛输入

2025-08-15 20:09:35 977

原创 十分钟搞定!ollama+Deepseek+cherry studio构建本地知识库

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!😝有需要的小伙伴,可以保存图片到。

2025-08-14 18:51:03 746

原创 10分钟搞定,Ollama本地部署完全指南,打造专属知识库

打开浏览器→下载 Ollama→输入 1 条命令→搞定!这不是魔法,而是本地部署大语言模型的全新方式。Ollama 简化了大型语言模型的运行,让每个人都能在本地轻松体验 AI 的强大。

2025-08-14 18:46:45 732

原创 一文解读大模型:什么是大模型微调?

预训练大模型虽然具有强大的泛化能力和广泛的知识,但它们通常是针对大量通用数据集进行训练的,这使得它们在处理特定任务时可能无法达到最佳效果,比如ChatGPT、混元、文心一言在回答一些常识性问题时表现的非常出色,但在物理、化学或编程等专业性问题上往往变的傻了吧唧。怎样让大模型更好地适用于特定场景?此时我们就需要利用特定任务的数据集来进一步训练模型,通过模型精调让全能型大模型变的专而精。

2025-08-11 18:59:33 948

原创 大模型知识图谱融合的三大应用场景

通用场景是指无行业属性的场景,通常为各行业的共性需求,如智能客服、知识助手、员工办公助手。通用场景的大模型落地进展较快,本月大模型落地案例中智能客服场景最多,占比为28%;行业垂直场景是指与特定行业业务需求高度相关的场景,例如城市治理、工业质检、智能投顾等。随着大模型技术应用程度加深,企业更加注重大模型技术对核心业务的赋能。从本月落地案例上看,金融、能源、医疗等细分行业落地进展更快。

2025-08-11 18:53:11 1075

原创 如何实现RAG 应用核心环节:检索与问答

经过一段时间的学习,我们已经深入了解了 RAGFlow 从文件上传、解析、分块到知识库构建的全过程,并探索了 RAPTOR、知识图谱、标签集等高级功能。至此,知识库的构建阶段已经完成,接下来我们将进入 RAG 应用的核心环节:检索与问答。

2025-08-04 21:37:51 702

原创 大模型案例拆解:基于Dify集成RAGFlow的知识召回,实现精准检索

在智能体构建和工作流等模型应用编排平台中,dify,ragflow、n8n和目前开源的Coze这几个工具各有其优势。但是,在实际使用中,为了追求更符合个人或者单位要求的效果,通常会将这些工具或者平台的优势集成起来,以便充分发挥各自的优势,今天这篇文章,就是在主要使用Dify的基础上,集成RAGFlow的知识召回能力,从而实现更可靠的知识检索能力。

2025-08-04 21:32:30 1005

原创 1小时教会你本地搭建免费个人AI知识库!

难道你就不想拥有一个超级能干的AI助理管家吗?就像是贾维斯一样的助手!那么DeepSeek的特点就是擅长理解中文,这一点比很多外国AI强大很多!那么我们就可以把自己的工作文件、个人日记、文档笔记交给它去处理,DeepSeek能快速吃透你给的各种文档, 最关键是能装在自己电脑上,我们不用担心隐私泄露!你要是使用公共AI处理就像把钥匙交给陌生人一样不放心,而DeepSeek就像把保险箱安在自己家!

2025-08-01 11:45:20 930

原创 构建企业专属大模型知识库,解决企业知识管理与应用难点

大部分企业的知识管理有三个不足:缺乏长期规划、缺乏组织机制和文化、缺乏智能化,大模型+知识库的体系建设,从知识管理的底层切入,帮助企业探索多场景的知识应用形态,提升企业知识应用价值。本文从知识库建设的挑战、AI+知识库建设框架与路径、4个不同场景的知识库落地案例,三个部分详细展开。

2025-08-01 11:35:26 816

原创 提示词工程:助你从AI“调教师“进阶为“驾驭者“。

"在AI时代,真正的力量不在于拥有最强大的模型,而在于懂得如何与之对话。""提示词工程是人类智慧与机器智能之间的翻译艺术。""一个精妙的提示词,胜过千万次盲目的尝试。"

2025-07-31 11:13:55 1101

原创 什么是提示工程(Prompt Engineering)

不知道大家有没有这种感觉,就是在我们使用AI助手的时候,它们有时候表现的像个天才、无所不会,有时候又变成了“人工智障”、答非所问?我们用的越多、就越能发现一个规律:那就是我们发送的信息越具体、越丰富,AI的回答就越准确、越接近我们心中所想。

2025-07-31 11:11:34 599

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除