DeepSeek-R1法律大模型虽对法律服务行业有颠覆性影响,但作者通过实践发现三个关键问题:未经专门训练的大模型法律检索错误频发;技术迭代速度快,部署后仍需频繁升级;本地部署硬件与训练成本高昂。因此,作者建议普通律师暂缓本地部署,转而关注未来可能出现的针对法律行业的蒸馏版本AI工具,同时掌握法律AI应用技能将成为律师职业发展的关键方向。
前排提示,文末有大模型AGI-CSDN独家资料包哦!
自2025年1月20日DeepSeek-R1面世以来,人工智能的崛起已经对法律服务行业的发展产生了颠覆性的影响。根据来源于网络的公开信息显示,截止2025年3月5日,已有多家大型律所宣布开始使用基于DeepSeek-R1的法律大模型或法律AI工具。笔者认为,法律AI工具有望成为未来法律服务机构的重要工具之一,而掌握法律大模型的应用也可能逐渐成为律师职业发展中的一项关键技能。
基于MIT开源协议的DeepSeek对于社会公众十分友好,即便是普通人也可以引入本地化部署并进一步创造适用于本地应用场景的个性化的大模型,笔者对此也十分感兴趣。但实际尝试过后,笔者反而暂时搁置了本地部署的想法,转而通过购买第三方服务的方式开展使用。
引起笔者看法转变的原因在于:
1. 未经专门法律训练的大模型无法胜任法律服务工作需求。
法律检索是律师工作中最基础也是最常见的一项工作,在笔者所有的法律服务工作中大约占据30%。因此,如能利用AI高效准确的进行法律检索,将极大地降低律师的时间成本。遗憾的是,即便是满血版的DeepSeek,在检索中仍然会出现各种错误,包括而不限于:提供已经失效的法律规定;提供虚假的案例信息;提供虚假的网络链接信息。
在某次测试中,如下图所示,DeepSeek(官网对话功能)提供了已经失效的司法解释条款,尽管后续在笔者进一步提示之后相关错误得到了修正。但同样错误在其他测试中仍在重复。
2. 法律大模型的技术更新迭代速度非常快。
大模型算法的发展历史可以追溯到早期的神经网络和循环神经网络(RNN),随后长短时记忆网络(LSTM)和门控循环单元(GRU)的出现改善了长序列处理能力。2017年,Transformer架构的提出通过自注意力机制彻底革新了自然语言处理领域,成为大模型的基础。2018年,BERT等预训练语言模型利用双向上下文理解显著提升了任务表现。此后,GPT系列模型通过自回归生成和更大规模预训练,逐步迈向千亿参数规模,如GPT-3展现了强大的零样本和少样本学习能力。近年来,多模态融合、知识蒸馏、稀疏注意力等技术进一步推动了模型的性能优化和效率提升,使大模型在通用人工智能领域不断突破边界。可以预见在不久的将来法律AI的形态还会不断进化,即使现在部署了本地化大模型,未来仍可能需要不断升级。
3. 本地化部署DeepSeek投入成本高。
一般的普通家用电脑无法直接运行“满血版”DeepSeek。而对硬件要求较低的“蒸馏版”DeepSeek在思考深度上确实难以和“满血版”相媲美。以笔者的实践为例,笔者尝试与DeepSeek 1.5B、7B和14B这三个蒸馏版小模型对话,1.5B模型和7B模型经常出现答非所问的情况,14B模型的回答相对靠谱,但在思考深度上仍略有不足,同时它的反馈速度已经肉眼可见地缓慢了下来。而在32B模型版本的尝试中,笔者现有的硬件已经不堪重负,更不用说是671B的满血版模型。网络上有已经有大量视频介绍本地部署DeepSeek的硬件配置。结合网络数据笔者估计一台运行满血版DeepSeek的电脑成本大约在人民币3-5万。
除了硬件成本以外,更高地是对本地大模型的训练成本。根据OpenAI创始成员Andrej Karpathy讲解的大模型训练过程视频中介绍的GPT大模型训练方式来看,普通律师本地化部署DeepSeek R1模型后,仍要投入数千上万计小时的时间来对模型进行调整训练、设置奖励优化,这不是一个独立的个人或者小团队能否负担得起的。
综上3点,笔者认为在未来也许一个针对法律行业的蒸馏版本法律AI才是律师的最佳选择。
总结
尽管法律AI潜力巨大,但当前仍需针对法律领域进行专门训练和优化。普通律师在面对AI变革时,应关注其技术发展,同时结合实际需求选择合适的使用方式,而非盲目本地化部署。未来,掌握法律AI工具的使用将是律师职业发展的重要方向。
文章来自网上,侵权请联系博主
读者福利:倘若大家对大模型感兴趣,那么这套大模型学习资料一定对你有用。
针对0基础小白:
如果你是零基础小白,快速入门大模型是可行的。
大模型学习流程较短,学习内容全面,需要理论与实践结合
学习计划和方向能根据资料进行归纳总结
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
这里我们能提供零基础学习书籍和视频。作为最快捷也是最有效的方式之一,跟着老师的思路,由浅入深,从理论到实操,其实大模型并不难。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓