机器学习——逻辑回归

分类问题

        逻辑回归(Logistic Regression)是一种广泛应用于分类问题的统计学习方法,尽管名字中带有"回归",但它实际上是一种用于二分类或多分类问题的算法。

        逻辑回归通过使用逻辑函数(也称为 Sigmoid 函数)将线性回归的输出映射到 0 和 1 之间,从而预测某个事件发生的概率。

逻辑回归广泛应用于各种分类问题,例如:

  • 垃圾邮件检测(是垃圾邮件/不是垃圾邮件)
  • 疾病预测(患病/不患病)
  • 客户流失预测(流失/不流失)

        在线性模型中的应用: 

 其中,输出的阈值是0.5,当h(x)>=0.5,y=1;当h(x)<0.5,y=0

假说解释

逻辑回归有:0<=h_w(x)<=1,h_w(x)=g(w^T x)

我们令集中z=w^T x,那么h(x)=g(z)

其中我们的sigmoid 函数(激活函数)是,代入可以得到:

决策边界 

与数据无关

代价函数 

 对于训练集:

m个样本:,其中x_0=1,y∈{0,1}

对于对于损失函数:

所以,J(w):

这样可能导致找到局部最小值,需要引入新的代价函数,也就是:

简化的成本函数和梯度下降

由前面的可以知道,对于逻辑回归的代价函数,有:

需要注意y=0/1,可以得到:

我们需要拟合参数w,使得,然后根据样本x输出预测

对于梯度下降

这里我们省略推导过程,得到:

为了防止过拟合还可以引入正则化,在代价函数后面加上:

同样的在对w的拟合过程中:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值