Description

When a thin rod is mounted on two solid walls and then heated, it expands and takes the shape of a circular segment, the original rod being the chord of the segment.
Your task is to compute the distance by which the center of the rod is displaced.
Input
The input contains multiple lines. Each line of input contains three non-negative numbers: the initial lenth of the rod in millimeters, the temperature change in degrees and the coefficient of heat expansion of the material. Input
data guarantee that no rod expands by more than one half of its original length. The last line of input contains three negative numbers and it should not be processed.
Output
For each line of input, output one line with the displacement of the center of the rod in millimeters with 3 digits of precision.
Sample Input
1000 100 0.0001 15000 10 0.00006 10 0 0.001 -1 -1 -1
Sample Output
61.329225.0200.000
由题可得出2等式,设角度为o
则一:r*o=l弧
二:coso=(2*r^2-l边^2)/2r^2.
两条等式,显然解是唯一确定的,根据等式二可以用o来表示r.
也就是ro=(l边*o)/(sqrt(2.0)*(sqrt(1-coso))=l弧
只与o相关,二分的前提是单调。我们先判断其单调性...
只需看o/(sqrt(1-coso))的单调性
一次求导,可看出只需判断(1-osino/2-coso)是否大于0
看不出来,我们就看(osino/2+coso)在0到pi的最大值
求导,易看出(osino/2+coso)是递减。
那么(osino/2+coso)在0取得最大值。
(1-osino/2-coso)的最小值就是0.所以,他递增~~~~
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
#define pi acos(-1.0)
#define inff 1e-11
int main()
{
//长度,温度,变化率。
double len,c,lv;
while(scanf("%lf%lf%lf",&len,&c,&lv)==3&&!(len==-1))
{
double lenhu=(1+c*lv)*len;
double l=0,r=pi;
while(l<r-inff)
{
double mid=(l+r)/2;
if(len*mid/(sqrt(2.0)*sqrt(1-cos(mid)))<lenhu)
{
l=mid;
}
else r=mid;
}
double r1=lenhu/l;
double h=sqrt(r1*r1-(len/2)*(len/2));
double aa=r1-h;
if(len==0||c==0||lv==0)printf("0.000\n");
else printf("%.3lf\n",aa);
}
return 0;
}