MySQL保护数据不丢失机制介绍

本文详细解释了InnoDB数据库中的Redolog缓冲区、事务提交与持久化策略,以及如何通过组提交优化磁盘I/O。重点讨论了LSN、WAL机制和MySQL的配置对性能的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码》点击传送门,即可获取!

redo log buffer里面的内容,是不是每次生成后都要直接持久化到磁盘呢?

  • 不需要。

如果事务执行期间MySQL发生异常重启,那这部分日志就丢了。由于事务并没有提交,所以这时日志丢了也不会有损失。

事务还没提交的时候,redo log buffer中的部分日志有没有可能被持久化到磁盘呢?

  • 有可能。

这个问题,要从redo log可能存在的三种状态说起,对应图2中的三个颜色块。

图2 MySQL redo log存储状态

这三种状态分别是:

  1. 存在redo log buffer中,物理上是在MySQL进程内存中;

  2. 写到磁盘(write),但是没有持久化(fsync),物理上是在文件系统的page cache里面;

  3. 持久化到磁盘,对应的是hard disk。

日志写到redo log buffer是很快的,wirte到page cache也比较快,但是持久化到磁盘的速度就很慢。

为了控制redo log的写入策略,InnoDB提供了innodb_flush_log_at_trx_commit参数,它有三种可能取值:

  1. 设置为0:表示每次事务提交时都只是把redo log留在redo log buffer中;

  2. 设置为1:表示每次事务提交时都将redo log直接持久化到磁盘;

  3. 设置为2:表示每次事务提交时都只是把redo log写到page cache。

InnoDB有一个后台线程,每隔1秒,就会把redo log buffer中的日志,调用write写到文件系统的page cache,然后调用fsync持久化到磁盘。

注意:事务执行中间过程的redo log也是直接写在redo log buffer中的,这些redo log也会被后台线程一起持久化到磁盘。也就是说,一个没有提交的事务的redo log,也是可能已经持久化到磁盘的。

除了后台线程每秒一次的轮询操作外,还有两种场景会让一个没有提交的事务的redo log写入到磁盘中:

  1. redo log buffer占用的空间即将达到innodb_log_buffer_size一半时,后台线程会主动写盘。注意,由于这个事务并没有提交,所以这个写盘动作只是write,而没有调用fsync,也就是只留在了文件系统的page cache。

  2. 并行的事务提交的时候,顺带将这个事务的redo log buffer持久化到磁盘。假设一个事务A执行到一半,已经写了一些redo log到buffer中,这时候有另外一个线程的事务B提交,如果innodb_flush_log_at_trx_commit设置的是1,那么事务B要把redo log buffer里的日志全部持久化到磁盘。这时候,就会带上事务A在redo log buffer里的日志一起持久化到磁盘。

两阶段提交的时候说过,时序上redo log先prepare, 再写binlog,最后再把redo log commit。如果把innodb_flush_log_at_trx_commit设置成1,那么redo log在prepare阶段就要持久化一次,因为有一个崩溃恢复逻辑是要依赖于prepare 的redo log,再加上binlog来恢复的。

每秒一次后台轮询刷盘,再加上崩溃恢复这个逻辑,InnoDB就认为redo log在commit的时候就不需要fsync了,只会write到文件系统的page cache中。

通常我们说MySQL的“双1”配置,指的就是sync_binlog和innodb_flush_log_at_trx_commit都设置成 1。也就是说,一个事务完整提交前,需要等待两次刷盘,一次是redo log(prepare 阶段),一次是binlog。

3 组提交

=====

3.1 日志逻辑序列号(log sequence number,LSN)


LSN是单调递增的,用来对应redo log的一个个写入点。每次写入长度为length的redo log, LSN的值就会加上length。

LSN也会写到InnoDB的数据页中,来确保数据页不会被多次执行重复的redo log。

如图3所示,三个并发事务(trx1, trx2, trx3)在prepare 阶段,都写完redo log buffer,持久化到磁盘的过程,对应的LSN分别是50、120 和160。

图3 redo log 组提交

从图中可以看到,

  1. trx1是第一个到达的,会被选为这组的 leader;

  2. 等trx1要开始写盘的时候,这个组里面已经有了三个事务,这时候LSN也变成了160;

  3. trx1去写盘的时候,带的就是LSN=160,因此等trx1返回时,所有LSN小于等于160的redo log,都已经被持久化到磁盘;

  4. 这时候trx2和trx3就可以直接返回了。

3.2 组提交


一次组提交里面,组员越多,节约磁盘IOPS的效果越好。

在并发更新场景下,第一个事务写完redo log buffer以后,接下来这个fsync越晚调用,组员可能越多,节约IOPS的效果就越好。

为了让一次fsync带的组员更多,MySQL有一个很有趣的优化:拖时间。在两阶段提交的时候,有一张流程图。

图4 两阶段提交

实际上,写binlog是分成两步的:

  1. 先把binlog从binlog cache中写到磁盘上的binlog文件;

  2. 调用fsync持久化。

MySQL为了让组提交的效果更好,把redo log做fsync的时间拖到了步骤1之后。也就是说,上面的图变成了这样:

图5 两阶段提交细化

这么一来,binlog也可以组提交了。在执行图5中第4步把binlog fsync到磁盘时,如果有多个事务的binlog已经写完了,也是一起持久化的,这样也可以减少IOPS的消耗。

不过通常情况下第3步执行得会很快,所以binlog的write和fsync间的间隔时间短,导致能集合到一起持久化的binlog比较少,因此binlog的组提交的效果通常不如redo log的效果那么好。

如果想提升binlog组提交的效果,可以通过设置 binlog_group_commit_sync_delay 和 binlog_group_commit_sync_no_delay_count来实现。

  1. binlog_group_commit_sync_delay参数,表示延迟多少微秒后才调用fsync;

  2. binlog_group_commit_sync_no_delay_count参数,表示累积多少次以后才调用fsync。

这两个条件是或的关系,也就是说只要有一个满足条件就会调用fsync。当binlog_group_commit_sync_delay设置为0的时候,binlog_group_commit_sync_no_delay_count也无效了。
WAL机制主要得益于两个方面:

  1. redo log 和 binlog都是顺序写,磁盘的顺序写比随机写速度要快;
  2. 组提交机制,可以大幅度降低磁盘的IOPS消耗。

最后

手绘了下图所示的kafka知识大纲流程图(xmind文件不能上传,导出图片展现),但都可提供源文件给每位爱学习的朋友

image.png

《一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码》点击传送门,即可获取!

最后

手绘了下图所示的kafka知识大纲流程图(xmind文件不能上传,导出图片展现),但都可提供源文件给每位爱学习的朋友

[外链图片转存中…(img-pq0Az0G0-1714638847968)]

《一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码》点击传送门,即可获取!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值