为什么说 交叉验证能 防止过拟合 呢?

本文解析了交叉验证如何通过分割数据集并独立评估模型,防止过拟合现象。通过对比不同超参数设置下的模型表现,选取最优参数,进而提升模型泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

为什么说交叉验证能 防止过拟合呢?

交叉验证 把 原始数据分成可 K 块 ,用每次用其中的 K-1块训练, 用 余下的 一块进行预测,

这样做,让算法在训练的时候没有接触过 余下来的那一块数据子集中的内容,这样,在对 余下这一块进行预测时,

算法只能靠他学会的本领来进行预测---------> 就是用学到的参数来预测。

 

但是,算法还是有超参数的:我们每次都需要主观选择超参数给算法才行,但是不同的超参数会导致模型有不同的效果,假设我们有四个超参数【1,10,100,1000】,我们运行10折交叉验证(既 训练了40个模型),  每次我们都用10个训练出来的模型的平均值 来表示 当前 超参数的效果。    

所以 我们比较了  4 个超参数的效果后,我们能找到一个更加 好的超参数,我们再用全量的数据 在该超参数上训练模型。因此,这样训练出来的模型是相对更优的,在一定程度上能避免 过拟合问题。

 

 

 

皮皮的 解释一下什么是过拟合:

 

比如说 语文老师 让同学A 解释一个句子:  ‘某鲁迅先生的文章~~~~~~~~’

欠拟合:    差生: 这是个什么鬼东西,比例哔哩哔哩~~~~

过拟合:    语文老师的解释: ‘表面上看是~~~,但其实~~~~,本质上~~~~~~,反映了~~~~心情,烘托了~~~气氛~~~’

正常:        当时鲁迅先生觉得天色晚了,该休息了。

 

嗯哈 ,皮了一下,  正常的解释还是看书比较好哈

 

 

88

为了有效地防止过拟合,统计学习中常常采用交叉验证的方法。推荐参阅《统计学习基础:数据挖掘、推理与预测(第二版)》以获取更深入的理解。在本书中,作者们详细介绍了交叉验证的技术细节和应用案例,为读者提供了宝贵的知识。 参考资源链接:[统计学习基础:数据挖掘、推理与预测(第二版)](https://wenku.csdn.net/doc/1foic6scko?spm=1055.2569.3001.10343) 交叉验证是一种评估模型泛化能力的方法,其核心思想是将训练数据集分成几部分,轮流使用其中一部分作为验证集,其余作为训练集。常见的交叉验证方法包括k折交叉验证和留一交叉验证。以k折交叉验证为例,主要步骤如下: 1. 将原始数据集随机分为k个大小相似的互斥子集。 2. 选择k-1个子集作为训练数据集,剩余的1个子集作为验证数据集。 3. 在选定的训练数据集上训练模型,并在验证数据集上进行评估,记录下模型性能指标,如准确度或均方误差。 4. 重复上述步骤k次,每次选择不同的训练集和验证集。 5. 计算所有k次评估结果的平均值,作为模型性能的最终评价。 通过交叉验证,可以更准确地估计模型对未知数据的预测能力,从而减少过拟合的风险。这是因为模型不会被特定的数据样本所特化,而是需要对多个不同子集的数据都表现出良好的泛化能力。此外,交叉验证还有助于模型参数的调优,通过比较不同参数设置下的交叉验证结果,可以找到表现最佳的参数组合。 在实际应用中,交叉验证尤其适用于数据集较小的情况,可以帮助我们充分利用有限的数据来评估模型。然而,值得注意的是,交叉验证虽然是一种强大的工具,但它也可能会引入计算成本,特别是当k值较大时。因此,在实践中需要根据数据集的大小和计算资源合理选择k值。 若要深入理解和掌握交叉验证的技术细节及如何将其应用于实际问题中,建议仔细阅读《统计学习基础:数据挖掘、推理与预测(第二版)》中的相关章节。该书提供了丰富的案例分析和深入的理论讨论,能够帮助读者更好地理解交叉验证在预防过拟合中的作用以及在模型评估和选择中的重要性。 参考资源链接:[统计学习基础:数据挖掘、推理与预测(第二版)](https://wenku.csdn.net/doc/1foic6scko?spm=1055.2569.3001.10343)
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值