点云缩放(附open3d python代码)

本文介绍了如何使用Python和Open3D库对点云数据进行缩放操作,通过示例代码详细展示了实现过程,帮助读者理解点云处理的基本技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

 

1/  numpy 数组方法
通过将点云数组乘以一个缩放因子来改变大小,
同时通过加法运算实现质心平移。

points = points/2.0#缩小到原来的一半
points[:, 0] = points[:, 0] + 20#质心平移到x=20处

2/ open3d的缩放函数为scale,包含两个参数。
第一个参数是缩放的比例,即放大的倍数。
第二个参数是坐标系原点移动到的位置,相当于缩放后的质心
朝相反的方向平移相同的尺度。如果设置第二个参数为(40, 0, 0),
那么缩放后的点云质心为(-40,0, 0)。

pcd2.scale(2.0, (40, 0, 0))#点云放大两倍,质心平移至(-40, 0, 0)



# coding:utf-8
import copy  # 点云深拷贝
import open3d as o3d

# -------------------------- 加载点云 ------------------------
print("->正在加载点云... ")
pcd = o3d.io.read_point_cloud("gongjian1.pcd")
print(pcd)
print(f'pcd质心:{pcd.get_center()}')
# ============================
### 使用PythonOpen3D库进行点云数据处理 #### 加载点云文件 为了加载点云文件,可以利用`read_point_cloud`函数来读取PCD或其他支持格式的文件。这使得能够轻松导入外部点云数据到程序中。 ```python import open3d as o3d pcd = o3d.io.read_point_cloud("path_to_pcd_file.pcd") print(pcd) print(f'Point Cloud Center: {pcd.get_center()}') ``` 这段代码展示了如何从指定路径加载一个`.pcd`格式的点云文件并打印其基本信息以及计算得到的质心位置[^2]。 #### 可视化点云 一旦有了点云对象,就可以调用内置方法来进行可视化操作: ```python o3d.visualization.draw_geometries([pcd]) ``` 此命令会打开一个新的窗口显示当前点云的数据,在该图形界面下可以通过键盘上的特定按键调整查看角度或缩放比例等交互功能[^4]。 #### 对点云执行基本变换 对于一些常见的几何转换需求,比如平移、旋转和平面拟合等,Open3D也提供了相应的API供开发者使用: ```python # 平移点云 translated_pcd = pcd.translate((1, 1, 1)) # 绕Z轴顺时针旋转90度 rotated_pcd = translated_pcd.rotate(o3d.geometry.get_rotation_matrix_from_xyz((-np.pi / 2, 0, 0))) # 计算法线向量 (假设已知每个点处的法线方向) if not pcd.has_normals(): pcd.estimate_normals() ``` 这些简单的例子说明了怎样快速实现对原始输入点集的各种基础修改[^1]。 #### 进行聚类分析 当涉及到更复杂的任务如分割不同部分或者识别特征结构时,则可能需要用到DBSCAN算法来做密度基空间聚类。下面给出了一段示范性的代码片段用于展示这一过程: ```python with o3d.utility.VerbosityContextManager( o3d.utility.VerbosityLevel.Debug) as cm: labels = np.array(pcd.cluster_dbscan(eps=0.02, min_points=10, print_progress=True)) max_label = labels.max() print(f"point cloud has {max_label + 1} clusters") colors = plt.get_cmap("tab20")(labels / (max_label if max_label > 0 else 1)) colors[labels < 0] = 0 pcd.colors = o3d.utility.Vector3dVector(colors[:, :3]) o3d.visualization.draw_geometries([pcd], zoom=0.7, front=[0.5439, -0.2333, -0.8060], lookat=[2.4615, 2.1331, 1.338], up=[-0.1781, -0.9708, 0.1608]) ``` 上述脚本不仅完成了实际的分类工作,还将结果直观地反映到了最终渲染出来的图像上。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云-激光雷达-Slam-三维牙齿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值