【论文阅读】APdrawing GAN (CVPR19)

APDrawing GAN是一种用于从人脸照片生成艺术风格线稿图的深度学习模型,该模型基于GAN,采用层级生成器和判别器结构。论文提出的新DT损失函数解决了线条对齐问题,同时模型通过分离不同面部区域进行更精确的绘制。该模型在CVPR2019发表,并提供了开源代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文题目:APdrawing GAN (CVPR19)

  • 风格迁移
  • 人脸照片 转换成 人脸线稿图
  • 原文地址:https://openaccess.thecvf.com/content_CVPR_2019/html/Yi_APDrawingGAN_Generating_Artistic_Portrait_Drawings_From_Face_Photos_With_Hierarchical_CVPR_2019_paper.html
  • 代码地址:https://github.com/yiranran/APDrawingGAN

难点

  • 线稿难复原
  • 风格抽象
  • 主要特征不能丢失,比如眼睛周围的线
  • ground truth中的轮廓(画家画的)并不是严格和人脸关键点对齐
  • 线稿和图像的低级特征(轮廓等特征)并不直接关联

模型结构

概述

  • APDrawing GAN: a noval GAN based architecture that builds upon hierarchical generators and discriminators combining both a global network (for images as a whole) and local networks (for individual facial regions).This allows dedicated drawing strategies to be learned for different facial features.
    在这里插入图片描述

具体细节

  • Our model is based on the GAN framework, consist- ing of a generator G and a discriminator D, both of which are CNNs specifically designed for APDrawings with line- stroke-based artist drawing style.
    • 模型包含一个生成器和一个判别器。
    • 生成器的作用:生成线稿图。
    • 判别器的作用:判断线稿图是否真实。
  • we propose a hierarchical structure for both generator and discriminator, each of which includes a global network and six local networks. The six local networks correspond to the local facial regions of the left eye, right eye, nose, mouth, hair and the background.
    • 生成器和判别器都是层级结构。包含一个全局网络和六个局部网络,局部按照图片语义信息分成6个局部。
  • Furthermore, the generator has an additional fusion network to synthesize the artistic drawings from the output of global and local networks.
    • 生成器包含一个额外的融合网络来处理全局网络和局部网络的输出。
  • 综上,生成器共包括G={ Gglobal,Gl∗,Gfusion}G = \{G_{global},G_{l∗}, G_{fusion}\}G={ Gglobal,Gl,Gfusion}, GglobalG_{global}Gglobal is a global generator, Gl∗={ Gleyel,Gleyer,Glnose,Glmouth,Glhair,Glbg}G_{l∗} = \{G_{l eye l}, G_{l eye r},G_{l nose},G_{l mouth},G_{l hair},G_{l bg}\}Gl={ G
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值