论文题目:APdrawing GAN (CVPR19)
- 风格迁移
- 人脸照片 转换成 人脸线稿图
- 原文地址:https://openaccess.thecvf.com/content_CVPR_2019/html/Yi_APDrawingGAN_Generating_Artistic_Portrait_Drawings_From_Face_Photos_With_Hierarchical_CVPR_2019_paper.html
- 代码地址:https://github.com/yiranran/APDrawingGAN
难点
- 线稿难复原
- 风格抽象
- 主要特征不能丢失,比如眼睛周围的线
- ground truth中的轮廓(画家画的)并不是严格和人脸关键点对齐
- 线稿和图像的低级特征(轮廓等特征)并不直接关联
模型结构
概述
- APDrawing GAN: a noval GAN based architecture that builds upon hierarchical generators and discriminators combining both a global network (for images as a whole) and local networks (for individual facial regions).This allows dedicated drawing strategies to be learned for different facial features.
具体细节
- Our model is based on the GAN framework, consist- ing of a generator G and a discriminator D, both of which are CNNs specifically designed for APDrawings with line- stroke-based artist drawing style.
- 模型包含一个生成器和一个判别器。
- 生成器的作用:生成线稿图。
- 判别器的作用:判断线稿图是否真实。
- we propose a hierarchical structure for both generator and discriminator, each of which includes a global network and six local networks. The six local networks correspond to the local facial regions of the left eye, right eye, nose, mouth, hair and the background.
- 生成器和判别器都是层级结构。包含一个全局网络和六个局部网络,局部按照图片语义信息分成6个局部。
- Furthermore, the generator has an additional fusion network to synthesize the artistic drawings from the output of global and local networks.
- 生成器包含一个额外的融合网络来处理全局网络和局部网络的输出。
- 综上,生成器共包括G={ Gglobal,Gl∗,Gfusion}G = \{G_{global},G_{l∗}, G_{fusion}\}G={ Gglobal,Gl∗,Gfusion}, GglobalG_{global}Gglobal is a global generator, Gl∗={ Gleyel,Gleyer,Glnose,Glmouth,Glhair,Glbg}G_{l∗} = \{G_{l eye l}, G_{l eye r},G_{l nose},G_{l mouth},G_{l hair},G_{l bg}\}Gl∗={ G