【深度学习】2018深度学习算法面经小记

前言

面的公司不多,基本都是提前批(找工作主要还是依靠提前批,坑多人少)。大多数时间都是在问简历相关的问题,基础知识和编程也涉及到一些,简单总结一下,也算回顾面试过程了。

面试题

基础知识

  1. 求空间中两异面直线的距离
  2. SVM的原理、推导
  3. SVM与决策树的比较
  4. 各种熵、KL散度、JS散度
  5. 解释梯度消失、梯度爆炸,以及为什么
  6. 解释过拟合,如何解决

编程

  1. 手写快排,快排的时间复杂度(为什么是O(nlogn)),比快排更快的算法实现
  2. 手写归并排序
  3. 求逆序对个数
  4. 手写maxpooling实现
  5. 计算IOU的实现
  6. 判断链表有环

深度学习相关

  1. 卷积网络中参数量、运算量的计算
  2. BN层的原理、应用,训练和测试时的设置
  3. Dropout 层的原理、应用
  4. 各种优化算法的比较
  5. 如何计算感受野
  6. 描述GAN,包括流程、Loss函数、生成器和判别器的结构
  7. GAN与之前方法(如VAE)的比较
  8. GAN的引申,描述一下比如DCGAN,WGAN(因为我说看过WGAN,所以让我讲了一下WGAN解决的两个问题以及如何解决的)
  9. 讲一下MobileNet,如何减少模型参数量

项目相关

因为这块会根据每个人的项目有很大的差异,所以简单根据我的某个项目(迁移学习相关)介绍一下面试官会注意到的地方

  1. 为什么要用迁移学习
  2. 讲一下迁移学习的应用场景
  3. 迁移学
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值