课程来源
知乎live-贝叶斯概率思维
目录
- 贝叶斯概率
- 贝叶斯定理
- 贝叶斯估计
- 贝叶斯网络
- 推荐书籍
- 涉及名词
前言
规则VS统计
基于规则的理性主义:如专家系统
基于统计的经验主义:如贝叶斯
基于规则需要专业知识体系,容易定义,但通用性不高。
基于统计则需要数据,并且相关性容易造成误导。
规则-演绎(柯南破案)
经验-归纳(神农尝百草)
贝叶斯思维
频率派VS贝叶斯派
频率派
通过长期、大量、重复实验:发生的频率(大数定律)
参数是常数
概率是客观存在的常数
贝叶斯派
信则有,不信则无
参数是随机变量
贝叶斯概率
先验概率:P(A)
后验概率:P(A|B)(已知B的前提下对A的信念)
贝叶斯定理
贝叶斯定理:
P
(
A
∣
B
)
=
P
(
B
∣
A
)
P
(
A
)
P
(
B
)
P(A|B) = \frac{P(B|A)P(A)}{P(B)}
P(A∣B)=P(B)P(B∣A)P(A)
已知先验,计算后验
通俗解释
问题:白马上坐着的不一定是王子,还可能是唐僧。那么,如何确定是王子还是唐僧。
P(A): 已知白马上坐着的可能是王子,也可能是唐僧。
P(B|A): 坐着的是王子时,后边大概率跟着的是仪仗队。如果是唐僧,后边跟着的大概率是三个徒弟。这样就可以根据白马后的场景(P(B))来判断白马上坐的是谁(P(A|B))
频率派和贝叶斯派的比较
对于一种病来说,如果药物对病症的有效率有95%,但是对非病者有5%的中毒率,那频率派认为这个药是可以使用的。但是如果这个病是罕见病,则贝叶斯定理会得出一个很小的数。因为P(A)太低了。对正常人来说,虽然中毒率低,但是基数过大,因此对最后结果有很大的影响。
贝叶斯估计
最大似然估计
最大似然估计(频率派思维)
参数:
p
a
r
a
m
e
t
e
r
=
θ
parameter = {\theta}
parameter=θ
数据:
D
=
{
d
1
,
d
2
.
.
.
.
d
n
}
D = \{d_1,d_2....d_n\}
D={d1,d2....dn}
arg
max
θ
p
(
θ
∣
D
)
⇔
arg
max
θ
p
(
D
∣
θ
)
\mathop{\arg\max}_{\theta}p(\theta|D)\Leftrightarrow \mathop{\arg\max}_{\theta}p(D|\theta)
argmaxθp(θ∣D)⇔argmaxθp(D∣θ)
l
i
k
e
l
i
h
o
o
d
=
arg
max
θ
p
(
D
∣
θ
)
likelihood = \mathop{\arg\max}_{\theta}p(D|\theta)
likelihood=argmaxθp(D∣θ)
当你已知一组数据时,要去分析参数是多少,才能使这组数据出现的概率最大。就叫最大似然估计。
这属于频率派思维,但是它没有考虑数据D出现的概率是多少。
最大后验估计
最大后验估计(MAP)(贝叶斯派)(如果知道先验概率)
arg
max
θ
p
(
θ
∣
D
)
⇔
arg
max
θ
p
(
D
∣
θ
)
p
(
θ
)
\mathop{\arg\max}_{\theta}p(\theta|D)\Leftrightarrow \mathop{\arg\max}_{\theta}p(D|\theta)p(\theta)
argmaxθp(θ∣D)⇔argmaxθp(D∣θ)p(θ)
需要考虑先验概率
p
(
θ
)
p(\theta)
p(θ)
像是在最大似然估计上加一个修正项。有一些贝叶斯的思想
贝叶斯估计
最大后验估计还不是纯正的贝叶斯思维,如果按照贝叶斯定理,则
p
(
θ
∣
D
)
=
p
(
D
∣
θ
)
)
p
(
θ
∫
p
(
D
,
θ
)
d
θ
p(\theta|D) = \frac{p(D|\theta))p(\theta}{\int p(D,\theta)d\theta}
p(θ∣D)=∫p(D,θ)dθp(D∣θ))p(θ
贝叶斯估计公式:
p
(
y
^
∣
x
∗
,
D
)
=
∫
θ
p
(
y
^
∣
x
∗
,
θ
)
p
(
θ
∣
D
)
d
θ
p(\hat{y}|x^*,D) = \int_{\theta}p(\hat{y}|x^*,\theta)p(\theta|D)d\theta
p(y^∣x∗,D)=∫θp(y^∣x∗,θ)p(θ∣D)dθ
(积分理解成求和,可以连续可以离散)
贝叶斯适合解决数据不平衡的问题
总结
最大似然估计对数据量需求最大,因为没有任何先验知识的修正,但是也会因此导致过拟合。
最大后验估计和贝叶斯估计有先验知识的修正,所以对数据量需求不大。但是坏处是需要好的先验知识。
贝叶斯网络
与神经网络没有关系,和概率图模型更接近。
推荐书籍
《贝叶斯方法:概率编程与贝叶斯推断》
《统计学习方法》
《像计算机科学家一样思考python》
涉及名词
达特茅斯会议
Alpha-go 蒙特卡洛树搜索【基于统计的概率计算】
拉斯维加斯算法
马尔科夫性
隐式马尔可夫链