The K−P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K−P factorization of N for any positive integers N, K and P.
Input Specification:
Each input file contains one test case which gives in a line the three positive integers N (≤400), K (≤N) and P (1<P≤7). The numbers in a line are separated by a space.
Output Specification:
For each case, if the solution exists, output in the format:
N = n[1]^P + … n[K]^P
where n[i] (i = 1, …, K) is the i-th factor. All the factors must be printed in non-increasing order.
Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 122+42+22+22+1^2, or 112+62+22+22+2^2, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen – sequence { a1,a2,⋯,aK } is said to be larger than { b1,b2,⋯,bK } if there exists 1≤L≤K such that ai=bi for i<L and aL>bL.
If there is no solution, simple output Impossible.
Sample Input 1:
169 5 2
Sample Output 1:
169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2
Sample Input 2:
169 167 3
Sample Output 2:
Impossible
题意
将一个正整数分解成K个正整数的P次幂
思路
首先初始化可能符合条件的因子,即对任意t = k ^ P(k <= N, t <=N),将其存放在一维数组table[k]中。然后深度优先搜索。对于题目要求的结果是底数和最大的序列,我们每一次dfs之后都计算指数的和并进行回溯,其结果存放在tempBaseTotal中,在符合条件的搜索结果中,只要tempBaseTotal>bestBaseTotal就更新序列和bestBaseTotal。对于底数和相同的序列,题目要求求字典序最大的一个。由于我们是从大的底数开始考虑,所以先搜索到的结果(底数和相同的情况下)一定是字典序优先级高的,所以对此情况无需处理。具体细节看代码。
代码
#include <cstdio>
#include <algorithm>
#include <cmath>
#define MAX_N 400