HDU1788-Chinese remainder theorem again

本文探讨了中国剩余定理的应用问题,通过一个具体的数学竞赛题目来解释如何使用该定理寻找满足特定条件的最小正整数解。文章提供了一个C++实现的示例代码,用于解决此类问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Chinese remainder theorem again

                                                                         Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
                                                                                                    Total Submission(s): 2639    Accepted Submission(s): 1119

Problem Description
我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的:
假设m1,m2,…,mk两两互素,则下面同余方程组:
x≡a1(mod m1)
x≡a2(mod m2)

x≡ak(mod mk)
在0<=<m1m2…mk内有唯一解。
记Mi=M/mi(1<=i<=k),因为(Mi,mi)=1,故有二个整数pi,qi满足Mipi+miqi=1,如果记ei=Mi/pi,那么会有:
ei≡0(mod mj),j!=i
ei≡1(mod mj),j=i
很显然,e1a1+e2a2+…+ekak就是方程组的一个解,这个解加减M的整数倍后就可以得到最小非负整数解。
这就是中国剩余定理及其求解过程。
现在有一个问题是这样的:
一个正整数N除以M1余(M1 - a),除以M2余(M2-a), 除以M3余(M3-a),总之, 除以MI余(MI-a),其中(a<Mi<100 i=1,2,…I),求满足条件的最小的数。 
 
Input
输入数据包含多组测试实例,每个实例的第一行是两个整数I(1<I<10)和a,其中,I表示M的个数,a的含义如上所述,紧接着的一行是I个整数M1,M1...MI,I=0 并且a=0结束输入,不处理。
 
Output
对于每个测试实例,请在一行内输出满足条件的最小的数。每个实例的输出占一行。
 

Sample Input
  
2 1 2 3 0 0
 
Sample Output
  
5
 
Author
lcy
 
Source

解题思路:M%Mi = Mi-a,所以k*Mi+Mi-a=x,即:Mi*(k+1)=M+a,即: M+a 是M1,M2,M3,……,Mi的一个最小公倍数

#include <iostream>
#include <algorithm>
#include <cstdio>

using namespace std;

#define ll long long

ll gcd(ll a,int b)
{
    if(a>b) return gcd(b,a);
    while(b%a)
    {
        int t=b%a;
        b=a;
        a=t;
    }
    return a;
}

int main()
{
    ll a[15],x,ans;
    int n;
    while(~scanf("%d %lld",&n,&x)&&x!=0)
    {
        ans=1;
        for(int i=0;i<n;i++)
            scanf("%lld",&a[i]);
        for(int i=0;i<n;i++)
        {
            ll d=gcd(ans,a[i]);
            ans=ans*a[i]/d;
        }
        printf("%lld\n",ans-x);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值