CutMix数据增强是一种结合了区域替换和标签混合的数据增强技术,旨在提升模型的泛化能力和定位特征的学习。以下是其关键要点:
基本原理
- 区域替换:随机选择两张图像,从一张图像裁剪一个区域并覆盖到另一张图像的对应位置,生成新图像。
- 标签混合:新图像的标签根据被替换区域的比例进行加权求和(如替换面积占比30%,则标签混合比例为原标签70% + 新标签30%)。
实现步骤
- 随机配对:从批次中随机选择两个样本 (xA,yA) 和 (xB,yB)。
- 采样参数:从Beta分布 Beta(α,α) 采样混合比例 λ(通常 α=1,即均匀分布)。
- 确定区域:
- 计算裁剪区域面积比例 ratio=λ。
- 区域宽高:rw=W⋅ratio,rh=H⋅ratio(W,H为图像宽高)。<