YOLOv5-seg 是 Ultralytics 团队在 YOLOv5 目标检测框架基础上扩展的 实时实例分割模型,兼顾速度与精度。其核心思想是通过 联合优化目标检测(定位+分类)和像素级分割,在单阶段框架中实现高效实例分割。以下从框架结构、关键技术、训练部署和应用场景等方面进行详细解析:
1. 框架整体结构
YOLOv5-seg 延续了 YOLOv5 的骨干网络设计,并在检测头(Head)中新增 分割分支,整体流程分为 特征提取 → 多尺度融合 → 检测与分割预测:
graph TD
A[Input Image] --> B[Backbone: CSPDarknet]
B --> C[Neck: PANet]
C --> D[Head: Detection + Segmentation]
D --> E[Detection: BBox/Class]
D --> F[Segmentation: Mask Proto]
E & F --> G[后处理: NMS + Mask Crop]