【YOLO】YOLOv5-seg框架详解

YOLOv5-seg 是 Ultralytics 团队在 YOLOv5 目标检测框架基础上扩展的 ​实时实例分割模型,兼顾速度与精度。其核心思想是通过 ​联合优化目标检测(定位+分类)和像素级分割,在单阶段框架中实现高效实例分割。以下从框架结构、关键技术、训练部署和应用场景等方面进行详细解析:


1. 框架整体结构

YOLOv5-seg 延续了 YOLOv5 的骨干网络设计,并在检测头(Head)中新增 ​分割分支,整体流程分为 ​特征提取 → 多尺度融合 → 检测与分割预测

graph TD
A[Input Image] --> B[Backbone: CSPDarknet]
B --> C[Neck: PANet]
C --> D[Head: Detection + Segmentation]
D --> E[Detection: BBox/Class]
D --> F[Segmentation: Mask Proto]
E & F --> G[后处理: NMS + Mask Crop]

 


2. 核心模块

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值