
deepseek实战
文章平均质量分 57
【完整代码实战教程RAG增强+embedding+deepseek+智能语音语义识别】通过 Java,Python,HTML 实现文本向量化、向量数据库操作、知识库建立、DeepSeek 模型调用及前端展示-最终实现智能语音问答
无极低码智能问数
多行业解决方案架构师,全栈开发
无极低码作者、智能问数作者
寻求商务合作
可提供商业软件研发,大模型智能体开发,企业培训,解决方案咨询,需求,方案,设计,编码,验收等项目的周期全过程,设计包括数据库设计,架构设计,原型设计,数据安全等,前端原生APP编码开发,web版移动端开发,微信开发,pc端管理系统开发,涉及技术点包括,数据采集爬取,缓存应用,语音识别与语音合成,Gis开发,大数据可视化,地图导航类,移动办公,电力巡航,天气服务等多个领域,涉及交通,应急,地震,政务,旅游,教育、政务多个行业,可以为企业提供完整的技术输出与技术方案
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
MCP调用示例说明,以百度地图为例
MCP服务服务端是由服务商提供好的调用代码,比如百度地图路线规划,原来是百度提供了接口,由开发人员自己写代码调用,现在通过本地部署百度提供的mcp服务,只需关系输入参数即可,服务调用由mcp服务端自己调用直接返回结果给mcp客户端。通过 MCP 协议,服务商可以提供预配置的 MCP 服务端,使得开发者可以更方便地调用其服务。原创 2025-04-18 11:34:35 · 702 阅读 · 0 评论 -
要不要使用mcp服务
比如我要做一个agent,可能会用到文件解析,长文本分词,向量化处理,语义化检索,数据库查询语句生成,图表生成,结果分析等。原创 2025-04-18 11:18:39 · 397 阅读 · 0 评论 -
手动创建自己的模型,实现意图识别
通过上述步骤,你可以构建一个能够识别用户意图(统计信息 vs 查询信息)的模型。,可以按照以下步骤设计和训练模型。将模型导出并部署为 API 服务。你需要收集一些用户输入的样本,并为每个样本标注意图类别。如果你没有现成的数据,可以手动创建或模拟一些样例。我们可以通过构建一个文本分类模型来完成这个任务。使用 Hugging Face 提供的。在测试集上运行模型,确保其泛化能力良好。要实现一个模型,能够识别用户输入是想。使用 Hugging Face 的。库对文本进行分词和编码。原创 2025-04-16 09:19:38 · 475 阅读 · 0 评论 -
基于deepseek的智能语音客服【第四讲】封装milvus数据库连接池封装
【代码】基于deepseek的智能语音客服【第四讲】封装milvus数据库连接池封装。原创 2025-03-22 22:53:19 · 233 阅读 · 0 评论 -
大模型幻觉产生的【九大原因】
【代码】大模型幻觉产生的【九大原因】原创 2025-03-22 22:12:22 · 625 阅读 · 0 评论 -
基于deepseek的智能语音客服【第三讲】知识库封装
知识库向量库构造原创 2025-03-19 22:23:49 · 135 阅读 · 0 评论 -
基于deepseek的智能语音客服【第二讲】后端异步接口调用封装
为什么要进行异步分装?因为前段需要流式输出,以减少用户长时间等待造成的不良体验集成HttpServlet 实现POST方法,get方式多伦对话有数据了限制。原创 2025-03-19 21:37:57 · 490 阅读 · 0 评论 -
基于deepseek的智能语音客服【第一讲】整体技术架构
全程无尿点,只讲重点,代码实现。不讲ollama、anythingllm、dify、coze【完整代码实战教程】通过 Java,Python,HTML 实现文本向量化、向量数据库操作、知识库建立、DeepSeek 模型调用及前端展示-最终实现智能问答。原创 2025-03-19 21:08:41 · 180 阅读 · 0 评论