python的opencv包--像素

感谢 杨秀璋的专栏,本文参考了 Eastmount 的 文章 https://blog.csdn.net/Eastmount/article/details/81748802

我的运行环境:

我的python:3.7.4

我的操作系统:win10

我的opencv库:4.1.1.26

用windows自带的画图软件,准备了三幅图:图幅均为长200像素,高100像素。

图1:填充的颜色为红=0,绿=0,蓝=255;文件名:B200x100.bmp 

图2:填充的颜色为红=0,绿=255,蓝=0;文件名:G200x100.bmp 

图3:填充的颜色为红=0,绿=0,蓝=255;文件名:R200x100.bmp

实验目的:

内存中图像的颜色是怎么表示的?

实验步骤:

### 使用 `opencv-python` 库进行图像处理 在 Python 中使用 `opencv-python` 进行图像处理涉及多个方面,括读取、显示和保存图像文件以及执行各种图像变换操作。 #### 安装必要的依赖项 为了能够顺利运行 OpenCV 的功能,需要先安装一些基本的依赖库。对于 Python 版本的要求是至少 3.4 或更高版本[^2]: ```bash pip install numpy matplotlib opencv-python ``` 如果希望获得更全面的功能支持,则可以考虑安装带有额外贡献模块的完整版 OpenCV: ```bash pip install opencv-contrib-python ``` #### 基础图像处理示例 下面是一个简单的例子来展示如何加载一张图片并将其转换成灰度图再显示出来: ```python import cv2 import matplotlib.pyplot as plt # 加载彩色图像 image = cv2.imread('example.jpg') # 将BGR颜色空间转为RGB以便于matplotlib正确显示色彩 rgb_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # 显示原始图像 plt.figure(figsize=(8, 6)) plt.imshow(rgb_image) plt.title("Original Image"), plt.axis('off') plt.show() # 转换成灰度模式 gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 展示灰度化后的图像 plt.figure(figsize=(8, 6)) plt.imshow(gray_image, cmap='gray') plt.title("Grayscale Image"), plt.axis('off') plt.show() ``` 这段代码首先导入所需的库,接着通过 `cv2.imread()` 函数读入一幅名为 'example.jpg' 的图像,并利用 Matplotlib 来可视化原图及其对应的灰度版本。 #### 图像边缘检测实例 另一个常见的应用是对输入图像做边缘增强处理,这可以通过 Canny 边缘检测算法实现: ```python edges = cv2.Canny(gray_image, threshold1=100, threshold2=200) plt.figure(figsize=(8, 6)) plt.imshow(edges, cmap='gray') plt.title("Edge Detection Result"), plt.axis('off') plt.show() ``` 这里调用了 `cv2.Canny()` 方法来进行边缘提取工作,参数中的两个阈值决定了哪些像素被认为是强边或弱边[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值