- 博客(161)
- 收藏
- 关注

原创 用python打造你自己的chatgpt问答机器人!(提供训练代码)-- 构建最基础的客户端,服务端和预模型
实现一个简单的RESTful API服务,允许客户端发送文本消息给服务器,服务器则利用预训练的语言模型生成回复并返回给客户端。通过这种方式,用户可以通过HTTP请求与我们的聊天机器人进行交流。
2025-01-04 15:50:01
3004
18

原创 利用机器学习预测离婚:从数据分析到模型构建(含方案和源码)
在本文中,我们详细介绍了如何使用递归特征消除法(RFE)和递归特征消除与交叉验证(RFECV)进行特征选择,并展示了如何在离婚预测数据集上应用这些方法。通过 RFECV,我们确定了最佳的特征数量,并选择了排名为 1、2、3 和 4 的特征。我们还进行了模型训练、交叉验证和性能评估,确保模型在测试集上的表现良好。
2024-12-03 17:59:56
1608

原创 机器学习预测实战 -- 信用卡交易欺诈数据监测(含方案和代码思路)
项目背景一批交易数据,数据总量28万,其中正常交易数据量占比99.83%,欺诈交易数据量仅占比0.17%。目标训练出一个模型,能判断出交易数据是正常数据还是欺诈数据方案一:下采样的方法训练模型获取数据import pandas as pdimport numpy as npimport seaborn as snsimport matplotlib.pyplot as pltimport timeimport warningswarnings.filterwarning
2022-03-27 00:10:47
11759
83
原创 了解 ReAct 框架:语言模型中推理与行动的协同
本文探讨了2022年提出的ReAct框架,该框架通过动态结合推理和行动来提升大型语言模型处理复杂任务的能力。ReAct框架的核心在于引导模型在推理(任务分解)和行动(工具调用)间循环迭代,从而增强模型的可解释性和通用性。文章详细介绍了ReAct的工作原理、与OpenAI tool_calls机制的配合方式,并提供了Python实现示例,展示如何构建支持多意图任务(如天气查询和数学计算)的智能代理。ReAct的优势包括动态推理、任务分解能力和可解释性,但也存在提示依赖、计算成本高等局限性。该框架特别适合需要外
2025-07-21 17:07:23
1290
原创 从简单的 OpenAI API 调用到构建 AI Agent:一步步实现
本文展示了如何将基础的OpenAI API调用逐步改造为功能完善的AI助手。通过添加交互循环、上下文记忆、外部工具调用和模块化设计,最终实现了一个支持多任务处理、能持续对话的智能代理。原始代码仅能处理单次请求,改进后版本具备记忆功能、天气查询和数学计算能力,同时优化了API密钥管理和代码结构。这一演进过程清晰地呈现了构建实用AI助手的关键步骤,为开发更复杂的智能代理奠定了基础。
2025-07-21 14:27:07
766
原创 st-Gcn训练跳绳识别模型六:YOLOv8-Pose 和 ST-GCN 实现实时跳绳计数器应用
本文介绍了一个基于YOLOv8-Pose和ST-GCN模型的实时跳绳计数器开发方案。系统通过摄像头实时捕捉视频,利用YOLOv8-Pose检测人体17个关键点,ST-GCN模型进行动作识别,结合脚踝y坐标变化实现跳绳计数。PyQt6构建的用户界面支持视频显示、状态监控和计数功能。关键创新点包括:1)多模型协同工作流程;2)基于Savitzky-Golay滤波的脚踝轨迹平滑算法;3)双阈值(预测次数和置信度)的跳绳状态判定机制。系统配置参数可调,适用于不同应用场景,为运动分析和健康监测提供了实用解决方案。
2025-07-18 11:06:18
134
原创 st-Gcn训练跳绳识别模型四:模型训练
本文介绍了ST-GCN算法的环境配置与训练流程。首先通过git下载源码并安装依赖环境,接着修改graph.py文件以支持COCO数据集格式。文中提供了YAML配置文件示例,包含数据路径、模型参数等关键设置。最后将训练数据移动到指定目录并执行训练命令,作者指出当前数据集规模可能不足。整个流程涵盖了从环境搭建到模型训练的关键步骤,为基于骨骼动作识别的ST-GCN算法实现提供了完整指导。
2025-07-18 11:01:16
60
原创 st-Gcn训练跳绳识别模型四:数据合并和训练流程
该脚本将跳绳动作识别任务的骨架数据处理为ST-GCN训练所需格式。主要步骤包括:加载骨架数据(.npy)和标签,应用空间(旋转/缩放/噪声)和时间(裁剪/翻转)增强提升泛化能力;通过过采样解决类别不平衡问题;按8:2比例划分训练/测试集并打乱顺序。最终输出包含x/y坐标的(N,2,100,17,1)格式数据文件(.npy)和样本标签文件(.pkl)。特点包括:移除速度流简化数据维度,固定100帧长度,基于1920x1080分辨率归一化坐标,确保数据格式一致且类别平衡。
2025-07-18 10:35:22
37
原创 st-Gcn训练跳绳识别模型三:自动提取视频数据生成npy代码解析
该脚本利用YOLOv8-Pose模型提取视频中的运动骨架数据,用于跳绳动作识别。它能处理跳绳(标签1)和非跳绳(标签0)两类视频,通过逐帧检测17个COCO关键点并归一化坐标,生成(2,100,17,1)维度的.npy文件。脚本支持动态分辨率处理,每100帧保存为一个样本,不足部分采用镜像填充补齐。标签信息存储在JSON文件中,便于后续模型训练。主要特点包括:批量处理视频、自动填充短片段、严格数据格式验证,并支持增量更新标签文件。输出数据可直接用于ST-GCN等动作识别模型的训练。
2025-07-18 09:55:57
42
原创 st-Gcn训练跳绳识别模型二:yolov8-pose提取骨骼数据代码讲解(源码在文末)
该Python脚本用于视频处理,提取基于COCO格式的17个关键点2D坐标,生成骨架数据并保存为.npy文件,同时存储对应标签到JSON文件。主要功能包括:使用YOLOv8-Pose模型检测视频帧中的关键点,选择离画面中心最近的人体;处理指定帧范围的视频片段,将关键点坐标存储为四维数组;批量处理多个视频文件,为ST-GCN等动作识别任务准备数据。脚本支持错误处理、进度显示,并生成包含样本名称和标签的汇总JSON文件,适用于多人场景下的单人动作识别数据预处理。
2025-07-18 09:51:12
53
原创 st-Gcn训练跳绳识别模型一:数据标注工具和标注流程
该工具集提供了一套完整的视频标注和骨骼关键点数据处理流程。主要包括:1)基于PySide6的视频标注工具labelV.py,可标记跳绳动作起止帧;2)jsonNpy.py将标注的JSON文件转换为npy格式,存储为[2,T,17,1]形状的骨骼关键点数据;3)autoLabel.py自动化处理工具,可批量处理跳绳/非跳绳视频并生成带标签的npy文件。系统支持yolov8-pose模型,生成的npy文件包含x/y坐标、帧数、17个关键点信息,同时维护全局标签JSON文件。该方案显著降低了人工标注工作量,为动作
2025-07-18 09:43:02
712
原创 Gcn符号笔记
摘要:本文介绍了无向图分析中的三个关键矩阵:邻接矩阵A[N,N]表示结点连接关系,度矩阵D[N,N]对角元素反映结点度数,结点特征矩阵X[N,C]包含结点属性特征(如年龄、性别或文本特征)。通过3结点示例和Cora数据集案例,说明了矩阵构建方法及其在图机器学习中的应用。邻接矩阵和度矩阵描述图结构,特征矩阵则支持结点分类等任务,三者共同构成图分析的基础工具。
2025-07-15 10:26:36
785
原创 [特殊字符] Excel秒出“数量大于500”报表!Python一键筛选+自动美化, 即刻高效呈现
摘要:本文介绍了一个Python脚本解决方案,通过pandas筛选Excel中数量超过500的物料记录,并自动创建新工作表。使用openpyxl对新表进行专业格式化处理,包括设置列宽、统一字体、添加边框和调整对齐方式,实现一键生成标准化报告。脚本支持追加写入不覆盖原数据,并提供了扩展建议,如添加条件格式、多阈值筛选等功能。该方法显著提升了数据处理效率,避免了繁琐的手动排版工作。(149字)
2025-07-11 10:52:35
260
原创 [特殊字符] 扫描式处理:Python 自动提取 PDF 中关键词相关表格并导出为 Excel
本文介绍用pdfplumber批量处理PDF文档的方法,主要针对财务报告等结构化文档,实现关键词定位和表格提取功能。通过Python脚本自动查找指定关键词(如"主要会计数据")所在页码及下一页,提取表格内容并保存为Excel文件。技术说明包括pdfplumber的表格提取策略、适用文档类型,以及优化建议如递归处理子目录、精准定位表格区域等。该方案为金融报表处理提供自动化流程,支持扩展集成图表识别、数据库导出等功能。
2025-07-11 10:45:41
1290
原创 ✍️ Python 批量设置 Word 文档多级字体样式(标题/正文/名称/小节)
本文介绍了一个利用python-docx库批量规范Word文档格式的自动化方案。通过定义专属字体样式函数,可自动设置标题、正文、一级/二级标题等不同层级的字体格式(如方正小标宋、楷体、仿宋、黑体等)。程序支持批量处理指定文件夹中的所有.docx文件,自动识别段落层级并应用相应样式,将处理结果保存至目标文件夹。文章详细说明了字体样式函数定义、批量处理逻辑以及注意事项,并提出了支持更多层级标题识别、添加页眉页脚等扩展建议,为办公文档的规范化排版提供了高效解决方案。
2025-07-09 14:49:00
539
原创 [特殊字符] Python 批量生成词云:读取词频 Excel + 自定义背景 + Excel to.png 流程解析
本文介绍使用Python批量生成词云图的方法:1) 读取Excel词频文件获取词频数据;2) 结合wordcloud库和背景图生成形状化词云;3) 自动保存为PNG并可视化展示。关键点包括:使用generate_from_frequencies()避免分词误差、设置中文字体防乱码、背景图需纯白底色。方法适用于文本分析可视化,可扩展为批量处理、自定义颜色等应用场景。附代码示例和注意事项。
2025-07-09 14:42:19
507
原创 [特殊字符] Python 实战 | 批量统计中文文档词频并导出 Excel
摘要:本文介绍了一个Python脚本解决方案,用于批量处理中文文档的词频统计。通过jieba分词库实现中文分词,结合自定义停用词过滤和单字过滤功能,准确统计各文档高频词。使用pandas库将结果按词频降序输出为Excel文件,为文本分析、内容审查等场景提供实用工具。文章还提出了多项优化建议,包括关键词提取、词云生成等扩展功能,并提供了完整代码示例和资源链接。该方案具有处理效率高、结果可视化强、扩展性好的特点。
2025-07-07 13:58:53
1107
原创 [特殊字符] Excel 读取收件人 + Outlook 批量发送带附件邮件 —— Python 自动化实战
摘要:本文介绍如何用Python实现批量邮件自动发送功能。通过openpyxl读取Excel中的收件人信息,利用win32com.client调用Outlook自动生成并发送邮件,包含主题、正文和附件。关键步骤包括:构建部门-收件人映射字典、封装邮件发送函数、批量处理所有部门邮件。文章还提供了实用建议,如多附件处理、异常捕获等,并建议了HTML模板、定时发送等扩展功能。该方法可有效提升办公效率,减少人工操作误差。(149字)
2025-07-07 13:53:55
746
原创 [特殊字符] 从图片自动生成 Excel:Python 批量 OCR 表格识别实战
本文介绍了一个使用Python批量处理图片表格的自动化方案。通过调用百度OCR表格识别接口,程序能够自动识别指定目录下的所有图片表格,并生成同名Excel文件。文章详细讲解了三个关键步骤:1)使用os.walk遍历获取图片路径;2)调用百度异步API进行表格识别并下载结果;3)添加进度提示优化用户体验。方案适用于文档扫描、图片归档等场景,并提供了质量控制、错误处理等实用建议。文末还探讨了可能的扩展方向,如增加GUI界面、数据库集成等功能,并提供了完整代码示例的下载链接。
2025-07-03 14:31:10
1039
原创 [特殊字符] Excel 按月筛选 + 工作表复制 + 样式批量处理 —— Python 自动化大汇总
摘要:本教程介绍使用Python的openpyxl库实现Excel自动化处理,包括:1)遍历多工作表查找每月物料数据;2)筛选G列数量>1000的记录;3)从模板复制生成汇总表并写入数据;4)统一样式设置(字体、边框、对齐等)。适用于供应链管理、月度报表等场景,可实现高效的数据筛选、报表生成和样式美化。文中提供了详细代码示例,并建议扩展功能如条件参数化、目录页生成等。
2025-07-03 14:17:42
751
原创 [特殊字符] Python 自动查找替换 Excel 单元格内容 —— 高效批量处理
摘要:本文介绍使用Python的openpyxl库实现Excel数据批量替换的方法。通过查找-替换表建立映射字典,读取目标文件的D列数据,提取关键码后进行匹配替换,最终生成新文件。核心步骤包括:1)构建查找替换字典;2)读取目标文件关键列;3)提取冒号后关键码;4)执行字典替换并保留前缀;5)保存新文件并处理空值。该方法适用于编码、ID等一对一替换场景,可扩展多列替换和自定义分隔符。文末提供完整代码和案例素材下载链接。
2025-07-02 10:18:01
338
原创 [特殊字符] Excel 提取+图片批量插入 | Python 自动化生成稽查报告 Word 模板
本教程介绍使用Python自动化生成图文稽查报告的方法。通过openpyxl读取Excel数据,用os模块排序图片文件,再用python-docx将数据和图片填充到Word模板表格中。关键步骤包括:提取Excel数据、排序图片路径、扩展Word表格行数、填充数据并插入图片(可设置尺寸)、保存最终文档。该方案实现了Excel数据与图片的自动化匹配插入,可扩展添加格式美化、统计等功能,大幅提升报告制作效率。
2025-07-02 10:11:52
1381
原创 ✨ Python 高级定制 | 美化 Word 表格边框与样式(收货记录增强版)
本文介绍了如何使用Python-docx库为Word表格添加高级样式,包括单元格边框设置、背景色填充、居中对齐等功能。通过底层XML操作实现边框样式定制,使用RGB颜色代码填充单元格背景,并提供了完整的样式增强步骤:数据行加粗、边框隐藏、内容居中以及数值高亮等。这些方法可以有效提升表格的可读性和专业性,适用于发票、统计报表等场景。文章还提供了代码示例和扩展方向说明,帮助用户将原始数据转化为精美的专业文档。
2025-06-30 09:32:59
640
原创 [特殊字符] Python 实战 | 从 Excel 提取数据 → 生成美观 Word 收货记录表格(含合并单元格 + 总计功能)
本文介绍了一个使用Python实现Excel到Word数据处理的自动化流程,包含数据提取、表格写入和单元格合并等功能。通过openpyxl读取Excel中的收货数据,python-docx将数据写入Word模板并自动合并相同内容单元格。教程提供了完整的代码示例,包括数据汇总函数和单元格合并方法,适用于采购、仓储等场景的报表自动化需求。该方案可扩展字体样式设置、动态模板识别等功能,有效提升办公效率。
2025-06-30 09:22:03
552
原创 [特殊字符] Python 批量合并 Word 表格中重复单元格教程(收货记录案例实战)
摘要:文章介绍如何使用Python的python-docx库自动合并Word表格中重复单元格。通过定义Merge_cells函数检测连续重复项并进行合并,保留首行内容。完整流程包括读取Word文档、合并单元格、覆盖空白内容及保存新文档。该方法适用于各类重复数据的表格处理,能有效提升表格美观度和可读性,可扩展支持多列合并等功能。
2025-06-27 14:12:30
925
原创 [特殊字符] Python 自动合并 Excel 中重复行 —— 提升表格可读性与美观度
本文介绍了如何使用Python的openpyxl库自动合并Excel中重复数据的单元格。主要内容包括:1. 提供了一个通用函数Merge_cells,可自动检测连续重复数据并合并对应单元格区域;2. 支持多列批量处理,保留表头不参与操作;3. 详细说明了函数实现原理,基于openpyxl.Worksheet.merge_cells()方法;4. 给出整体处理流程示例,包括读取Excel、处理数据、保存结果;5. 提示了合并操作的注意事项和扩展可能性。该方法可显著提高处理大量重复数据时的效率,增强表格可读性。
2025-06-27 09:52:51
601
原创 [特殊字符] 用 Python 一键提取 Excel 中的中文(正则表达式超实用)
通过本例,你掌握了:如何使用openpyxl读取和写入 Excel;使用正则表达式精准匹配中文字符;如何将提取结果批量写入 Excel;这种技巧在产品清单清洗、文本分类、数据抽取中都非常常用,非常适合办公自动化场景。
2025-06-25 11:44:47
437
原创 [特殊字符] Python 办公自动化实战技巧(三招教你轻松搞定重复工作)
【Python办公自动化实战技巧】3段代码解决Excel/PPT重复工作: 1️⃣ Excel多Sheet批量修改 功能:统一修改所有工作表的指定单元格 代码:openpyxl遍历sheet,修改A4单元格为"测试代码" 2️⃣ PPT自动生成荣誉证书 流程:读取Excel名单+PPT模板占位符识别 成果:批量生成每位同学专属证书页 3️⃣ PPT文本提取导出 实现:提取PPT文字内容并自动生成TXT和Word文档 应用:快速将课件转为文字讲义/会议纪要 这些代码具备"一键批量
2025-06-25 11:33:30
798
原创 OpenCV图像拼接技术详解:从特征匹配到全景合成
本文介绍了使用OpenCV实现图像自动拼接的技术流程,包括特征提取、匹配和图像融合等关键步骤。文章详细解析了ORB特征检测、暴力匹配、RANSAC算法计算单应性矩阵等技术实现,并提供了完整的代码实现。同时指出了图像顺序、重叠区域、特征点数量等注意事项,以及解决常见问题的方法。该技术可应用于全景摄影、医学影像等领域,通过调整算法参数能适应不同场景需求,并可通过改进融合策略进一步提升拼接效果。
2025-06-18 09:27:46
490
原创 从训练到部署:基于 Qwen2.5 和 LoRA 的轻量化中文问答系统全流程实战
《基于LoRA技术的轻量级中文问答系统构建方案》介绍了一套完整的轻量级大语言模型解决方案。采用阿里云Qwen2.5系列模型结合LoRA微调技术,实现了从多GPU分布式训练到Web部署的全流程。方案包含三大核心模块:分布式训练脚本、LoRA模型合并工具,以及基于Gradio的Web交互界面。通过LoRA技术显著降低训练成本,合并后的模型简化了部署流程,Gradio界面支持流式响应和多轮对话。该方案具有模块化设计、训练效率高、部署简单等特点,适合个人开发者和中小企业构建中文问答应用。完整代码已开源共享。
2025-06-04 11:04:48
503
原创 打造可扩展的大模型训练框架:支持PEFT微调、分布式训练与TensorBoard可视化
本文介绍了一个模块化的NLP模型训练框架,支持LoRA微调、多卡训练和TensorBoard可视化。主要内容包括:1) 分布式训练环境初始化;2) JSON数据集预处理为HuggingFace格式;3) 支持8bit量化的模型加载;4) 自定义Trainer实现训练可视化;5) 将所有模块整合为完整训练流程。该框架基于HuggingFace Transformers和PEFT库开发,具备生产环境适用性,未来可扩展评估测试、DeepSpeed集成等功能。
2025-06-04 10:37:05
567
原创 大模型学习笔记day2 LoRA微调
LoRA方法通过在预训练模型旁添加低秩矩阵(A和B)实现参数高效微调。A初始化为正态分布,B初始化为零矩阵,确保初始阶段不干扰原模型表现。
2025-05-26 15:32:51
457
原创 基于PyTorch的图像分类特征提取与模型训练文档
本代码实现了一个基于PyTorch的图像特征提取与分类模型训练流程。核心功能包括:使用预训练ResNet18模型进行图像特征提取将提取的特征保存为标准化格式基于提取的特征训练分类模型。
2025-04-29 17:00:02
565
原创 大模型学习笔记 day01 提示工程入门1.One-shot & Few-shot提示学习法
解决CoT提示方法泛化能力不足的问题——即通过人工编写的思维链提示样本可能并不能够很好的迁移到别的问题当中去,换而言之,就是解决问题的流程迁移能力不足,即泛化能力不够。,只不过LtM会要求模型根据每个不同的问题,单独生成解决问题的链路,以此做到解决问题流程的“千人千面”,从而能够更加精准的解决复杂推理问题。输入一些类似问题和问题答案,让模型参考学习,并在同一个prompt的末尾提出新的问题,依次提升模型的推理能力。),从而让模型学到思维链的推导过程,并将其应用到新的问题中。来解决最原始的问题。
2025-04-21 15:03:21
407
原创 Python零基础学习第四天:文件操作与异常处理
用except Exception as e捕获所有异常,print(e)查看错误信息。文件就像电子笔记本,需要先“翻开”才能读写,用完必须“合上”(防止数据丢失)。:面向对象编程初探——用类描述现实世界(学生类、汽车类、银行账户类):encoding="utf-8" 解决中文乱码问题。:如果尝试用r模式打开不存在的文件会怎样?:读取用户文件时防崩溃。
2025-04-07 09:40:02
793
原创 Python零基础学习第三天:函数与数据结构
函数是什么?想象你每天都要重复做同一件事,比如泡咖啡。函数就像你写好的泡咖啡步骤说明书,每次需要时直接按步骤执行,不用重新想流程。参数类型必须参数:调用时必须传递(如make_coffee(2)里的2)默认参数:不传值时使用默认值(如sugar=1)可变参数:接收任意数量参数(*args用于元组,**kwargs用于字典)返回值用return返回结果,可返回多个值(实际是元组)无return时函数返回None。
2025-04-07 09:26:13
227
原创 Python零基础学习第三天:函数与数据结构
def student_info(name, age, *hobbies, **scores): print(f"姓名:{name}, 年龄:{age}") print("爱好:", hobbies) print("成绩:", scores) student_info("小明", 18, "篮球", "编程", 数学=90, 英语=85)可变参数:接收任意数量参数(*args用于元组,**kwargs用于字典)局部变量:函数内部定义的变量(如函数内的add)元组(Tuple)与集合(Set)
2025-03-09 17:06:11
1235
1
煤炭领域煤矿媒质分析毕业设计代码与数据集分享:代码,成果展示以及对应数据集
2025-06-04
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人