概述
Spring Boot中使用Redis实现限流功能是一种常见的做法,特别是在高并发场景下,限流可以有效防止系统过载,保证服务的稳定性。
1. 限流的应用场景
限流通常用于以下场景:
-
API限流:防止API被恶意或过度调用,保护后端服务。
-
防止爬虫:限制爬虫的访问频率,防止数据被大量抓取。
-
秒杀系统:在秒杀活动中,限制用户的请求频率,防止系统崩溃。
-
防止DDoS攻击:通过限流防止分布式拒绝服务攻击。
2. Redis限流的实现原理
Redis限流的常见实现方式有:
-
计数器算法:通过Redis的
INCR
命令实现简单的计数器限流。 -
滑动窗口算法:通过Redis的有序集合(
ZSET
)实现滑动窗口限流。 -
令牌桶算法:通过Redis的
LIST
或ZSET
实现令牌桶限流。
下面我们以计数器算法为例,讲解如何在Spring Boot中实现限流。
3. Spring Boot集成Redis实现限流
3.1 添加依赖
首先,在pom.xml
中添加Spring Boot和Redis的依赖:
<dependencies>
<!-- Spring Boot Starter -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<!-- Spring Boot Redis Starter -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
<!-- Lettuce Redis Client -->
<dependency>
<groupId>io.lettuce</groupId>
<artifactId>lettuce-core</artifactId>
</dependency>
</dependencies>
3.2 配置Redis
在application.properties
中配置Redis连接信息:
spring.redis.host=localhost
spring.redis.port=6379
3.3 实现限流逻辑
我们可以通过自定义注解和AOP来实现限流功能。
3.3.1 自定义限流注解
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;
@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
public @interface RateLimiter {
String key(); // Redis的key
int limit(); // 限流次数
int expire(); // 过期时间(秒)
}
3.3.2 实现AOP切面
import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.reflect.MethodSignature;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Component;
import java.lang.reflect.Method;
@Aspect
@Component
public class RateLimiterAspect {
@Autowired
private RedisTemplate<String, Object> redisTemplate;
@Around("@annotation(rateLimiter)")
public Object around(ProceedingJoinPoint joinPoint, RateLimiter rateLimiter) throws Throwable {
String key = rateLimiter.key();
int limit = rateLimiter.limit();
int expire = rateLimiter.expire();
// 获取当前请求的次数
Long count = redisTemplate.opsForValue().increment(key, 1);
if (count == 1) {
// 如果是第一次请求,设置过期时间
redisTemplate.expire(key, expire, TimeUnit.SECONDS);
}
if (count > limit) {
// 超过限流次数,抛出异常或返回错误信息
throw new RuntimeException("请求过于频繁,请稍后再试");
}
// 执行目标方法
return joinPoint.proceed();
}
}
3.3.3 使用限流注解
在Controller中使用@RateLimiter
注解:
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
@RestController
@RequestMapping("/api")
public class ApiController {
@RateLimiter(key = "api:limit:test", limit = 5, expire = 60)
@GetMapping("/test")
public String test() {
return "请求成功";
}
}
4. 示例代码解释
-
@RateLimiter
注解:用于标记需要限流的方法,指定限流的key、限制次数和过期时间。 -
RateLimiterAspect
切面:通过AOP拦截带有@RateLimiter
注解的方法,使用Redis的INCR
命令实现计数器限流。 -
RedisTemplate:用于操作Redis,实现计数器的自增和过期时间设置。
5. 运行效果
-
当请求
/api/test
接口时,每60秒内最多允许5次请求。 -
如果超过5次请求,将抛出异常并返回错误信息。
6. 总结
通过Spring Boot和Redis的结合,我们可以轻松实现限流功能。计数器算法是最简单的限流方式,适用于大多数场景。如果需要更复杂的限流策略(如滑动窗口、令牌桶等),可以基于Redis的有序集合或列表实现。
在实际应用中,限流策略的选择应根据具体业务需求进行调整,以确保系统的稳定性和高可用性。