老陈说编程
今日tou条: 老陈说编程
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
第27天 | PyQt5集成Seaborn
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。 学了数据分析技术Seaborn,又学了桌面应用框架PyQt5的你,开发一个销售数据分析小系统,帮助企业领导高效决策,提高经营效率,发现业务机会点,让企业获得持续竞争的优势,将不再是梦。梦的起航,从功能界面开始。 27.1 功能概述 数据分析,按区域和年份组合条件进行数据查询,区域选择”所有”(默.原创 2021-09-07 16:50:09 · 478 阅读 · 0 评论 -
第26天 | Seaborn数据分析,集成在wxPython中
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。 学了数据分析技术Seaborn,又学了桌面应用框架wxPython的你,开发一个销售数据分析小系统,帮助企业领导高效决策,提高经营效率,发现业务机会点,让企业获得持续竞争的优势,将不再是梦。梦的起航,从功能界面开始。 26.1功能概述 数据分析,按区域和年份组合条件进行数据查询,区域选择”所.原创 2021-08-29 14:54:02 · 662 阅读 · 0 评论 -
第25天 | Seaborn数据分析,多变量分布图,清晰地看到?
多变量分布图JointGrid,用于绘制具有边际单变量图的双变量图的网格。它由外部矩阵和内部散点或核密度估计图等组成,这种由内外部组成的图形,可以清晰地看到所研究多个变量两两之间的相关关系。它的语法为: JointGrid(self, *, x=None, y=None, data=None, height=6, ratio=5, space=.2, dropna=False, xlim=None, ylim=None, size=None, marginal原创 2021-08-29 13:50:05 · 595 阅读 · 0 评论 -
第24天 | Seaborn数据分析,成对关系图,你的最爱
成对关系图PairGrid,允许使用相同的绘图类型快速绘制小子图的网格,以可视化每个 子图中的数据。在一个PairGrid中,每个行和列都分配给不同的变量,因此结果可显示数据集中的每个成对关系。这种情节有时被称为“散点图矩阵”,因为这是显示每种关系的最常用方式,但PairGrid不限于散点图。它的语法为: PairGrid(self, data, *, hue=None, hue_order=None, palette=None, hue_kws=None, vars=None,.原创 2021-08-29 13:49:53 · 776 阅读 · 0 评论 -
第23天 | Seaborn数据分析,多绘图网格,FacetGrid
在seaborn中,除了可用Figure-level级别的接口,如relplot,Axes-level级别的接口,如scatterplot之外,还可以用FacetGrid、PairGrid和JointGrid这种不分级别,统一模式绘制图形的接口。 多绘图网格FacetGrid、成对关系图PairGrid和多变量分布图JointGrid接口,常用于绘制由不同内容的组合图,它们的用法差不多,咱就以FacetGrid为例,说一下使用方式。 FacetGrid使用数据集和用于构造网格的变量初始化对象,通过调用F原创 2021-08-29 13:49:06 · 428 阅读 · 0 评论 -
第22天 | Seaborn数据分析,聚集图,具有横向样本和纵向基因
聚集图clustermap,将矩阵数据集绘制成分层聚类热图,它的函数里面其实是使用了heatmap的,但是加上了聚类功能,使得其绘制出来的热力图具有横向样本(sample)和纵向基因(gene)的聚类功能。它的语法为: clustermap(data, *, pivot_kws=None, method='average', metric='euclidean',z_score=None, standard_scale=None, figsize=(10,原创 2021-08-29 13:48:27 · 438 阅读 · 0 评论 -
第21天 | Seaborn数据分析,热力图,感受数值的差异状况
矩阵图法就是从多维问题的事件中,找出成对的因素,排列成矩阵图,然后根据矩阵图来分析问题,确定关键点的方法。它是一种通过多因素综合思考,探索问题的好方法。从问题事项中找出成对的因素群,分别排列成行和列,找出其中行与列的相关性或相关程度大小的一种方法。 在Seaborn里实现矩阵图,最常用的是用heatmap绘制热力图和用clustermap绘制聚集图。其实,clustermap的函数里面其实是使用了heatmap的,但是加上了聚类功能。 21.1 热力图 热力图heatmap,将矩形数据绘制为颜色编码.原创 2021-08-29 13:47:55 · 806 阅读 · 0 评论 -
第20天 | Seaborn数据分析,多变量回归图,lmplot
多变量回归图(lmplot),同样是用于绘制回归图,但lmplot支持引入第三维度进行对比,如设置hue="species"。它结合了regplot和FacetGrid,它预期作为一个能够将回归模型运用在数据集处于不同条件下的子数据集的方便的接口。它的语法为: lmplot(*, x=None, y=None, data=None, hue=None, col=None, row=None, palette=None, col_wrap=None, height=5, asp.原创 2021-08-28 00:05:22 · 578 阅读 · 0 评论 -
第19天 | Seaborn数据分析,线性回归图,regplot
回归分析,是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,它按照涉及的变量的多少,分为一元回归和多元回归分析;按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。 在seaborn里,可用regplot绘制线性回归图,可用lmplot绘制多变量回归图。regplot和lmplot功能十分接近,但也有不同,regplot只能显示一对变量之间的关系,而lmplot支持引入第三维度(如hue="species")进行对比。原创 2021-08-28 00:05:05 · 1492 阅读 · 0 评论 -
第18天 | Seaborn数据分析,分布图,displot
分布图displot,用kind指定要绘制的图形,kind="hist"(默认)时,绘制直方图histplot;kind="kde"时,绘制密度估计图的kdeplot;kind="ecdf"时,绘制累积分布图的ecdfplot。此外,可以将rugplot添加到任何类型的图中,以显示单个观察结果。不同的是,displot同时绘制子图比较容易,用之前学过的,col或row指定就行。它的语法为: displot(data=None, *,x=None, y=None, hue=None, row=None,.原创 2021-08-28 00:04:43 · 1083 阅读 · 0 评论 -
第17天 | Seaborn数据分析,边际分布图,展示数据离散分布
边际分布图rugplot的功能非常朴素,用于绘制出一维数组中数据点实际的分布位置情况,即不添加任何数学意义上的拟合,单纯的将记录值在坐标轴上表现出来,相对于kdeplot,其可以展示原始的数据离散分布情况,它的语法为: rugplot(x=None,*,height=.025, axis=None, ax=None, data=None, y=None, hue=None, palette=None, hue_order=None, hue_norm=None, e原创 2021-08-28 00:04:27 · 710 阅读 · 0 评论 -
第16天 | Seaborn数据分析,核密度估计图,比较多个分布
累积分布图ecdfplot,表示低于数据集中每个唯一值的观测值的比例或计数。与直方图或密度图相比,它的优点是可以直接直观地观察每个观察结果,这意味着不需要调整分箱或平滑参数,还有助于直接比较多个分布。它的语法为: ecdfplot(data=None,*, x=None, y=None, hue=None, weights=None, stat="proportion", complementary=False, palette=None, hue_order=N原创 2021-08-28 00:04:09 · 697 阅读 · 0 评论 -
第15天 | Seaborn数据分析,核密度估计图,概率论
核密度估计图kdeplot,是在概率论中用来估计未知的密度函数,属于非参数检验方法之一,它可以比较直观的看出数据样本本身的分布特征。kdeplot支持单变量和双变量的核密度估计,效果和displot(hist=False)一致,但它拥有更多的自定义设置,语法为: kdeplot(x=None, *, y=None, shade=None, vertical=False, kernel=None, bw=None, gridsize=200, cut=3, clip=None,原创 2021-08-28 00:03:49 · 671 阅读 · 0 评论 -
第14天 | Seaborn数据分析,直方图,有质量
分布图提供了表示一个变量与另一个变量如何相互关联的的标准方法,它是表现一些现象空间分布位置与范围的图型。包括占有空间小又零散的现象,或流动性大难于确定具体位置的现象,或性质与数量不能立即确定的现象等。 seaborn实现分布图会用到绘制直方图的histplot、绘制密度估计图的kdeplot、绘制累积分布图的ecdfplot和绘制边际分布图的rugplot,还有结合了它们的displot。displot是一个Figure-level接口,而histplot、kdeplot、ecdfplot和rugplot原创 2021-08-28 00:03:30 · 485 阅读 · 1 评论 -
第13天 | Seaborn数据分析,类别图,不一样的分类
类别图的catplot为分类散点图、分类分布图和分类估计图的统一接口,通过kind属性指定值,实现对应的绘制效果,如kind="strip"(默认值),实现的是stripplot的效果,"swarm"对应swarmplot,"box"对应boxplot,"violin"对应violinplot,"boxen"对应boxenplot,"point"对应pointplot,"bar"对应barplot,"count"对应countplot,它的语法为: catplot(*, x=None, y=None,h原创 2021-08-28 00:02:57 · 474 阅读 · 0 评论 -
第12天 | Seaborn数据分析,计数直方图,分组更清晰
计数直方图countplot,可将它认为一种应用到分类变量的直方图,也可认为它是用以比较类别间计数差;countplot的参数和barplot基本差不多,有一点不同的是countplot中不能同时输入x和y,且countplot没有误差棒。它的语法为: countplot(*, x=None, y=None, hue=None, data=None, order=None, hue_order=None, orient=None, color=None, pal原创 2021-08-28 00:01:59 · 651 阅读 · 0 评论 -
第11天 | Seaborn数据分析,条形图,让数据一目了然
条形图barplot,主要展现的是每个矩形高度的数值变量的中心趋势的估计。它只显示平均值或其他估计值,以矩形条的方式展示数据的点估值和置信区间,用每个矩形的高度来表示数值变量的集中趋势的估计值,并提供误差条来显示估计值得不确定度。条形图的纵轴是从零开始的,这对于0值是有意义的情况是非常好的。它的语法为: barplot(*, x=None, y=None, hue=None, data=None, order=None, hue_order=None,estimator=np.mean,原创 2021-08-28 00:01:30 · 560 阅读 · 0 评论 -
第10天 | Seaborn数据分析,点图,分析进出口贸易数据
点图pointplot,代表散点图位置的数值变量的中心趋势估计,并使用误差线提供关于该估计的不确定性的一些指示。它比条形图在聚焦一个或多个分类变量的不同级别之间的比较时更为有用。点图尤其善于表现交互作用:一个分类变量的层次之间的关系如何在第二个分类变量的层次之间变化。它的语法为: pointplot(*, x=None, y=None, hue=None, data=None, order=None, hue_order=None, estimator=np.mean, ci=95,原创 2021-08-27 17:13:53 · 296 阅读 · 0 评论 -
第9天 | Seaborn数据分析, 增强箱图,强在哪儿?
增强箱图boxenplot,可以为大数据集绘制增强的箱图。增强箱图通过绘制更多的分位数来提供数据分布的信息。它的语法为: boxenplot(*, x=None, y=None, hue=None, data=None, order=None, hue_order=None, orient=None, color=None, palette=None, saturation=.75, width=.8, dodge=True, k_dept原创 2021-08-27 17:05:48 · 579 阅读 · 0 评论 -
第8天 | Seaborn数据分析,小提琴图,弹出了日期之声?
小提琴图violinplot的功能与箱型图(boxplot)类似。它显示了一个或多个分类变量多个属性上的定量数据的分布,从而可以比较这些分布。与箱形图不同,其中所有绘图单元都与实际数据点对应,小提琴图描述了基础数据分布的核密度估计,它的语法为: violinplot(*, x=None, y=None, hue=None, data=None, order=None, hue_order=None, bw="scott", cut=2, scale="area",原创 2021-08-27 16:59:43 · 433 阅读 · 0 评论 -
第7天 | Seaborn数据分析,箱形图,分析高大尚餐厅消费数据
箱形图(boxplot)又称为盒须图、盒式图或箱线图,是一种用作显示一组数据分散情况资料的统计图。它能显示出一组数据的最大值、最小值、中位数及上下四分位数。因形状如箱子而得名。在各种领域也经常被使用,常见于品质管理。它的语法为: boxplot(*, x=None, y=None, hue=None, data=None, order=None, hue_order=None, orient=None, color=None, palette=None, saturat原创 2021-08-27 16:51:58 · 333 阅读 · 0 评论 -
第6天 | Seaborn数据分析,分类散点图,产品销售分析
类别图,显示连续变量和分类变量之间的关系,可以条理清楚地分析出数据之间存在的某种关系。在分析两个数值变量之间的主要关系时,如果其中一个主要变量是“可分类的”(能被分为不同的组),那么我们可以使用Figure-level接口的catplot,也可以使用如下Axes-level级别的方法。 分类散点图:stripplot() (kind="strip",默认值)和swarmplot() (kind="swarm"); 分类分布图:boxplot()(kind="box")、violinplot()(ki..原创 2021-08-27 16:04:44 · 363 阅读 · 0 评论 -
第5天 | Seaborn数据分析,关系结合图,分析出游人数
relplot是散点图和线形图的结合体,当kind=”scatter”(默认值)时,相当于用scatterplot()绘制散点图;kind=” line”时,相当于lineplot()用来绘制线形图,不同的是relplot可以轻松地绘制多张子图,它的语法为: relplot(*, x=None, y=None, hue=None, size=None, style=None, data=None,palette=None, hue_order=None, hue_no原创 2021-08-27 15:48:19 · 171 阅读 · 0 评论 -
第4天 | Seaborn数据分析,人脑活动分析图,猴赛雷
对于某些数据集,你可能希望了解一个变量中的变化关于时间的函数,或者类似的连续变量。在这种情况下,一个很好的选择是用多维度分析线形图lineplot绘制线形图,它可显示一段时间内的趋势,多条线可以用来显示多个组中的趋势,它的语法为: lineplot(*, x=None, y=None,hue=None, size=None, style=None, data=None,palette=None, hue_order=None, hue_norm=None, size原创 2021-08-27 15:42:17 · 209 阅读 · 0 评论 -
第3天 | Seaborn数据分析,多维度散点图,雪糕销售如何?
关联图,又称关系图,是用来分析事物之间“原因与结果”、“目的与手段”等复杂关系的一种图表,它能够帮助人们从事物之间的逻辑关系中,寻找出解决问题的办法。它将众多的影响因素以一种较简单的图形来表示,易于抓住主要矛盾、找到核心问题,也有益于集思广益,迅速解决问题。 seaborn实现关联图会用到绘制多维度分析散点图的scatterplot、绘制多维度分析线形图的lineplot,还有结合了它们的relplot。relplot是一个Figure-level接口,而scatterplot和lineplot则是Ax.原创 2021-08-27 15:31:04 · 364 阅读 · 0 评论 -
第2天 | Seaborn数据分析,绘图五步曲
seaborn是一个基于matplotlib且数据结构与pandas统一的统计图制作库,它封装的API分为Figure-level和Axes-level两种。Figure-level适合于快速应用,而Axes-level的方法则可以实现与Matplotlib更灵活和紧密的结合。你将它们理解成matplotlib中的Figure和Axes就好了。 来一个Figure-level的接口代表relplot,它是绘制散点图和线形图的结合体,用kind进行区分,语法为: relplot(*, x=None, y原创 2021-08-27 15:15:50 · 292 阅读 · 0 评论 -
第1天 | Seaborn数据分析,美丽图表,爱了爱了
matplotlib是Python 2D绘图领域使用最广泛的第3方库,它可以让使用者将数据进行可视化,输出多样化的格式,绘制多种分析图,如散点图、条形图和柱状图等,它的旧版本 绘制出来的图形是比较丑的,不知从什么时候开始,悄悄地引入了seaborn的主题风格。 matplotlib功能虽然强大,有一个十分令人头疼的问题,那就是应用太复杂了,3000多页的官方文档,上千个方法以及数万个参数,属于典型的,你可以用它做任何事,但又无从下手,更别说掌握了。 seaborn对matplotlib进行了变装,修改原创 2021-08-27 14:56:08 · 387 阅读 · 1 评论