目录
更大层面上的Attention
在attention中,怎么分区channel-wise还是spatial-wise
为了更好地理解 “wise”,可以将其看作是一种特定维度或方面的强调。例如:
“time-wise” 表示与时间相关的事物。
在这种用法中,“wise” 帮助明确我们正在讨论的是哪一个特定的维度或方面。因此,当我们谈论 “channel-wise” attention 时,我们的焦点是在于如何以通道为基础进行操作;当我们谈论 “spatial-wise” attention 时,我们的焦点是在于空间位置或区域。
在神经网络中,特别是在处理图像或视频数据时,Attention 机制可以以不同的方式集中于输入数据的不同部分。在这些方法中,“channel-wise” 和 “spatial-wise” attention 是两种常见的方式。下面解释这两种方式:
- Channel-wise Attention
- 含义:在 “channel-wise” attention 中,“wise” 指的是关注操作是针对不同的通道进行的。在图像处理中,通道通常指的是颜色通道(如RGB中的红、绿、蓝),或者在深度学习模型中,通道可以是不同的特征表示。
- 例子:如果一个图像处理模型正在处理一个具有多个通道的特征图,“channel-wise” attention 将决定哪些通道更重要,可能会增强一些通道的特征而减弱其他通道的特征。
应用:这种类型的attention在处理那些不同通道具有不同语义信息的数据时特别有用。例如,在卷积神经网络中,不同的卷积层可能会学习到代表不同高级特征的通道(如边缘、纹理等)。
- Spatial-wise Attention
- 含义:在 “spatial-wise” attention 中,“wise” 指的是关注操作是针对图像或特征图的不同空间区域进行的。这种方法关注于图像中的不同位置,而不是整个图像作为一个整体。
- 例子:在对象检测任务中,“spatial-wise” attention 可能会集中于图像中包含重要对象的区域,而忽略其他不相关的区域。
应用:这种类型的attention在图像识别或对象检测等任务中特别有用,因为它可以帮助模型集中于图像中最重要的部分,例如,一个对象可能只占据图像的一小部分。
- 如何选择
选择 channel-wise 还是 spatial-wise attention 取决于具体任务和数据的特点。在某些情况下,甚至可以将两者结合起来,以便同时利用通道和空间信息。例如,一些高级神经网络架构在其attention机制中同时考虑了通道和空间维度,从而提高了模型对图像的理解能力。
举一个Spatial-Channel Attention的例子
例子来自于《Cross-Modal Relation-Aware Networks for Audio-Visual Event Localization》中的AGSCA模块,图片和英文部分均为原文
Given audio features a t ∈ R d a \boldsymbol{a}_t \in \mathbb{R}^{d_a} at∈Rda and visual features v t ∈ R d v × ( H ∗ W ) v_t \in \mathbb{R}^{d_v \times(H * W)} vt∈Rdv×(H∗W) where H H H and W W W are the height and width of feature maps respectively, AGSCA first generates channel-wise attention maps M t c ∈ R d v × 1 \boldsymbol{M}_t^c \in \mathbb{R}^{d_v \times 1} Mtc∈Rdv×1 to adaptively emphasize informative features. It then produces spatial attention maps M t s ∈ R 1 × ( H ∗ W ) \boldsymbol{M}_t^s \in \mathbb{R}^{1 \times(H * W)} Mts∈R1×(H∗W) for the channelattentive features to highlight sounding regions, yielding channelspatial attentive visual features v t c s v_t^{c s} vtcs, as illustrated in Figure 3. The attention process can be summarized as, v t c s = M t s ⊗ ( v t c ) T , v t c = M t c ⊙ v t , \begin{aligned} & v_t^{c s}=\boldsymbol{M}_t^s \otimes\left(v_t^c\right)^T, \\ & v_t^c=\boldsymbol{M}_t^c \odot v_t, \end{aligned} vtcs=Mts⊗(vtc)T,vtc=Mtc⊙vt,where ⊗ \otimes ⊗ denotes matrix multiplication, and ⊙ \odot ⊙ means element-wise multiplication. We next separately introduce the channel-wise attention that generates attention maps M t c \boldsymbol{M}_t^c Mtc and spatial attention that produces attention maps M t s \boldsymbol{M}_t^s M<