【Pytorch】CNN中的Attention

更大层面上的Attention

在attention中,怎么分区channel-wise还是spatial-wise

为了更好地理解 “wise”,可以将其看作是一种特定维度或方面的强调。例如:
“time-wise” 表示与时间相关的事物。
在这种用法中,“wise” 帮助明确我们正在讨论的是哪一个特定的维度或方面。因此,当我们谈论 “channel-wise” attention 时,我们的焦点是在于如何以通道为基础进行操作;当我们谈论 “spatial-wise” attention 时,我们的焦点是在于空间位置或区域。

在神经网络中,特别是在处理图像或视频数据时,Attention 机制可以以不同的方式集中于输入数据的不同部分。在这些方法中,“channel-wise” 和 “spatial-wise” attention 是两种常见的方式。下面解释这两种方式:

  1. Channel-wise Attention
  • 含义:在 “channel-wise” attention 中,“wise” 指的是关注操作是针对不同的通道进行的。在图像处理中,通道通常指的是颜色通道(如RGB中的红、绿、蓝),或者在深度学习模型中,通道可以是不同的特征表示。
  • 例子:如果一个图像处理模型正在处理一个具有多个通道的特征图,“channel-wise” attention 将决定哪些通道更重要,可能会增强一些通道的特征而减弱其他通道的特征。

应用:这种类型的attention在处理那些不同通道具有不同语义信息的数据时特别有用。例如,在卷积神经网络中,不同的卷积层可能会学习到代表不同高级特征的通道(如边缘、纹理等)。

  1. Spatial-wise Attention
  • 含义:在 “spatial-wise” attention 中,“wise” 指的是关注操作是针对图像或特征图的不同空间区域进行的。这种方法关注于图像中的不同位置,而不是整个图像作为一个整体。
  • 例子:在对象检测任务中,“spatial-wise” attention 可能会集中于图像中包含重要对象的区域,而忽略其他不相关的区域。

应用:这种类型的attention在图像识别或对象检测等任务中特别有用,因为它可以帮助模型集中于图像中最重要的部分,例如,一个对象可能只占据图像的一小部分。

  1. 如何选择

选择 channel-wise 还是 spatial-wise attention 取决于具体任务和数据的特点。在某些情况下,甚至可以将两者结合起来,以便同时利用通道和空间信息。例如,一些高级神经网络架构在其attention机制中同时考虑了通道和空间维度,从而提高了模型对图像的理解能力。

举一个Spatial-Channel Attention的例子

例子来自于《Cross-Modal Relation-Aware Networks for Audio-Visual Event Localization》中的AGSCA模块,图片和英文部分均为原文

Given audio features a t ∈ R d a \boldsymbol{a}_t \in \mathbb{R}^{d_a} atRda and visual features v t ∈ R d v × ( H ∗ W ) v_t \in \mathbb{R}^{d_v \times(H * W)} vtRdv×(HW) where H H H and W W W are the height and width of feature maps respectively, AGSCA first generates channel-wise attention maps M t c ∈ R d v × 1 \boldsymbol{M}_t^c \in \mathbb{R}^{d_v \times 1} MtcRdv×1 to adaptively emphasize informative features. It then produces spatial attention maps M t s ∈ R 1 × ( H ∗ W ) \boldsymbol{M}_t^s \in \mathbb{R}^{1 \times(H * W)} MtsR1×(HW) for the channelattentive features to highlight sounding regions, yielding channelspatial attentive visual features v t c s v_t^{c s} vtcs, as illustrated in Figure 3. The attention process can be summarized as, v t c s = M t s ⊗ ( v t c ) T , v t c = M t c ⊙ v t , \begin{aligned} & v_t^{c s}=\boldsymbol{M}_t^s \otimes\left(v_t^c\right)^T, \\ & v_t^c=\boldsymbol{M}_t^c \odot v_t, \end{aligned} vtcs=Mts(vtc)T,vtc=Mtcvt,where ⊗ \otimes denotes matrix multiplication, and ⊙ \odot means element-wise multiplication. We next separately introduce the channel-wise attention that generates attention maps M t c \boldsymbol{M}_t^c Mtc and spatial attention that produces attention maps M t s \boldsymbol{M}_t^s M<

### 如何在PyTorch中实现CNN-LSTM-Attention模型 #### CNN-LSTM-Attention架构概述 组合卷积神经网络(CNN),长短时记忆(LSTM)以及注意力(Attention)机制可以有效提升时间序列分析和其他连续数据处理任务的效果。通过利用CNN提取局部特征,LSTM捕捉长期依赖关系,而Attention则帮助聚焦于重要的输入部分。 #### 构建CNN层 首先定义用于特征抽取的二维卷积层。这一步骤对于图像或其他具有空间结构的数据尤为重要,在一维情况下同样适用以捕获局部模式: ```python import torch.nn as nn class CNNEncoder(nn.Module): def __init__(self, input_channels=1, out_channels=64, kernel_size=3): super(CNNEncoder, self).__init__() self.conv_layer = nn.Sequential( nn.Conv1d(in_channels=input_channels, out_channels=out_channels, kernel_size=kernel_size), nn.ReLU(), nn.MaxPool1d(kernel_size=2)) def forward(self, x): output = self.conv_layer(x) return output ``` #### 设计LSTM模块 接着创建一个标准的单向或多层LSTM来接收由前面提到的CNN编码器产生的输出,并进一步加工这些抽象表示形式: ```python class LSTMLayer(nn.Module): def __init__(self, hidden_dim=128, num_layers=2, bidirectional=False): super(LSTMLayer, self).__init__() self.lstm = nn.LSTM(input_size=hidden_dim, hidden_size=hidden_dim, num_layers=num_layers, batch_first=True, bidirectional=bidirectional) def forward(self, x): lstm_out, _ = self.lstm(x) return lstm_out ``` #### 实现Attention机制 最后加入自注意机制以便让模型学会关注最相关的上下文信息片段。这里展示了一个简单的加法型attention函数实现方式: ```python class AttentionLayer(nn.Module): def __init__(self, method='dot'): super(AttentionLayer, self).__init__() self.method = method if self.method not in ['dot', 'general']: raise ValueError('Unknown attention type') elif self.method == "general": self.attn = nn.Linear(hidden_dim, hidden_dim) def dot_score(self, query, key): return torch.sum(query * key, dim=-1) def general_score(self, query, key): energy = self.attn(key) return torch.sum(query * energy, dim=-1) def forward(self, query, keys): # Calculate the alignment scores based on chosen method. if self.method == 'dot': attn_energies = self.dot_score(query.unsqueeze(1), keys) elif self.method == 'general': attn_energies = self.general_score(query.unsqueeze(1), keys) # Transpose max_length and batch_size dimensions to get (batch_size, max_length). attn_weights = F.softmax(attn_energies.t(), dim=1).unsqueeze(1) context_vector = torch.bmm(attn_weights, keys) return context_vector.squeeze(1), attn_weights ``` #### 组合各组件形成完整的模型 现在有了上述三个主要组成部分之后就可以把它们组装起来构成最终的目标模型——即带有注意力机制的支持长短期记忆特性的卷积神经网络了: ```python class CNN_LSTM_Attention(nn.Module): def __init__(self, cnn_encoder, lstm_layer, atten_method="dot"): super(CNN_LSTM_Attention, self).__init__() self.cnn_encoder = cnn_encoder self.lstm_layer = lstm_layer self.attention_layer = AttentionLayer(method=atten_method) def forward(self, inputs): conv_output = self.cnn_encoder(inputs.permute(0, 2, 1)) # Adjust dimension order for Conv1D operation. lstm_input = conv_output.permute(0, 2, 1) # Restore original shape before feeding into LSTM. lstm_outputs = self.lstm_layer(lstm_input) context_vector, attn_weights = self.attention_layer(lstm_outputs[:, -1], lstm_outputs) return context_vector, attn_weights ``` 此代码段展示了如何使用PyTorch搭建一个融合了CNN、LSTM和Attention三种技术优势于一体的深度学习模型[^1]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值