作者制作不易,关注、点赞、收藏一下吧!
目录
1. 数据科学与机器学习
1.1 NumPy
特点:提供高效的多维数组操作和数学计算功能。
用途:矩阵运算、线性代数、随机数生成等。
官网:numpy
1.2 Pandas
特点:强大的数据处理和分析工具,支持DataFrame结构。
用途:数据清洗、统计分析、时间序列处理。
官网:pandas
1.3 Scikit-Learn
特点:经典的机器学习库,包含丰富的算法和工具。
用途:分类、回归、聚类、降维等任务。
官网:scikit-learn
1.4 TensorFlow / PyTorch
特点:深度学习框架,支持GPU加速和复杂神经网络构建。
用途:图像识别、自然语言处理、强化学习等。
官网:
- TensorFlow: tensorflow
- PyTorch:pytorch
2. Web开发
2.1 Flask
特点:轻量级Web框架,灵活且易于扩展。
用途:快速构建RESTful API或小型Web应用。
官网:flask
2.2 Django
特点:全功能Web框架,内置ORM、认证系统等。
用途:大型Web应用开发。
官网:django
2.3 FastAPI
特点:高性能异步Web框架,支持自动生成API文档。
用途:构建现代API服务。
官网:fastapi
3. 自动化与脚本
3.1 Requests
特点:简单易用的HTTP请求库。
用途:发送HTTP请求、爬取网页数据。
官网:requests
3.2 Selenium
特点:浏览器自动化工具,支持模拟用户操作。
用途:网页爬虫、UI测试。
官网:selenium
3.3 PyAutoGUI
特点:跨平台GUI自动化工具。
用途:鼠标键盘控制、屏幕截图。
官网:pyautogui
4. 数据可视化
4.1 Matplotlib
特点:经典的数据可视化库,支持多种图表类型。
用途:绘制折线图、柱状图、散点图等。
官网:matplotlib
4.2 Seaborn
特点:基于Matplotlib的高级可视化库,风格美观。
用途:统计图表绘制。
官网:seaborn
4.3 Plotly
特点:交互式图表库,支持动态效果。
用途:制作仪表盘、3D图表。
官网:plotly
5. 文件处理
5.1 OpenPyXL
特点:用于读写Excel文件的库。
用途:处理.xlsx格式的电子表格。
官网:openpyxl
5.2 PyPDF2
特点:用于处理PDF文件的库。
用途:合并、拆分、提取PDF内容。
官网:pypdf2
5.3 python-docx
特点:用于创建和修改Word文档的库。
用途:生成报告、编辑.docx文件。
官网:python-docx
6. 其他实用库
6.1 Rich
特点:终端富文本渲染库,支持颜色、表格、进度条等。
用途:美化命令行输出。
官网:rich
6.2 PyInstaller
特点:将Python脚本打包为独立可执行文件。
用途:发布桌面应用程序。
官网:pyInstaller
6.3 APScheduler
特点:轻量级任务调度库。
用途:定时任务管理。
官网:apscheduler
部分内容来自通义千问。