智能算法优化的四旋翼飞行器抗扰动控制
智能算法优化的四旋翼飞行器抗扰动控制
基于MATLAB实现的《基于深度学习的心电身份识别系统》完整技术方案.zip
基于MATLAB实现的《基于深度学习的心电身份识别系统》完整技术方案.zip
车载CAN总线数据采集与故障诊断装置设计与实现.zip
车载CAN总线数据采集与故障诊断装置设计与实现.zip
融合深度学习的智能算法在气象预测中的研究.zip
融合深度学习的智能算法在气象预测中的研究.zip
-梯度下降算法
前向传播:计算隐藏层激活(ReLU)和输出
损失计算:均方误差(MSE)
反向传播
多目标进化算法优化的城市地下管网布局.zip
多目标进化算法优化的城市地下管网布局.zip
基于GA的生物启发式神经网络结构搜索.zip
基于GA的生物启发式神经网络结构搜索,matlab实现仿真
面向6G的智能反射面(IRS)配置优化算法.zip
面向6G的智能反射面(IRS)配置优化算法.zip
53-GA优化PID控制器参数的液位控制系统仿真.zip
53-GA优化PID控制器参数的液位控制系统仿真.zip
52-GA优化机器人动态避障路径的MATLAB仿真.zip
52-GA优化机器人动态避障路径的MATLAB仿真.zip
演示视频:https://mpbeta.csdn.net/mp_others/manage/video
基于遗传算法的无人机三维路径规划仿真.zip
基于遗传算法的无人机三维路径规划仿真.zip
MATLAB数字水印系统 - GUI实现
深入理解一种简单的数字水印嵌入与提取方法 - 空间域水印嵌入方法:最低有效位(LSB)替换法
深入理解一种简单的数字水印嵌入与提取方法 --- 空间域水印嵌入方法:最低有效位(LSB)替换法;
MATLAB数字水印系统 - GUI实现
将上述代码复制到MATLAB编辑器中
保存为 watermark_gui.m 文件
在MATLAB命令窗口中输入 watermark_gui 运行程序
功能说明
1. 水印嵌入选项卡
选择载体图像:选择要嵌入水印的原始图像
选择水印图像:选择要嵌入的水印(自动调整为32x32二值图像)
嵌入水印:执行LSB水印嵌入算法
保存结果:保存含水印的图像
2. 水印提取选项卡
加载含水印图像:加载已嵌入水印的图像
提取水印:从图像中提取水印信息
保存提取结果:保存提取出的水印图像
3. 抗攻击测试选项卡
加载含水印图像:加载要测试的图像
选择攻击类型:
高斯噪声
椒盐噪声
JPEG压缩
中值滤波
高斯滤波
旋转攻击
缩放攻击
裁剪攻击
应用攻击:对图像应用选定的攻击
提取水印:从攻击后的图像中提取水印
评估指标:显示PSNR(图像质量)和NC(水印相似度)指标
4. 关于选项卡
显示系统信息和功能说明
技术特点
纯MATLAB脚本实现:
不依赖App Designer
使用传统GUI编程方法
兼容所有MATLAB版本(R2014b及以上)
完整的数字水印功能:
LSB水印嵌入算法
水印提取功能
多种攻击模拟
评估指标计算(PSNR和NC)
用户友好界面:
选项卡式界面设计
图像预览功能
状态提示和错误处理
直观的操作流程
图像处理能力:
支持多种图像格式(JPG、PNG、BMP等)
自动图像转换(RGB转灰度)
水印图像自动二值化和调整大小
电场计算+云图生成+HFSS数据导入适配.zip
电场计算+云图生成+HFSS数据导入适配.zip
200kV高压直流电源主电路设计方案及MATLABSimulink实现方案.zip
200kV高压直流电源主电路设计方案及MATLABSimulink实现方案.zip
异步延时采样技术实现PDM信号参数监测的深度学习系统.zip
异步延时采样技术实现PDM信号参数监测的深度学习系统.zip
基于感应加热的避雷器电压致热缺陷仿真模拟研究.zip
基于感应加热的避雷器电压致热缺陷仿真模拟研究.zip
贝叶斯神经网络(BNN)进行概率区间预测的完整Python实现方案.zip
贝叶斯神经网络(BNN)进行概率区间预测的完整Python实现方案.zip
基于YOLOv8改进的多行为识别与课堂质量评估系统完整实现方案.zip
基于YOLOv8改进的多行为识别与课堂质量评估系统完整实现方案.zip
基于MATLAB的YUV视频压缩与解压缩系统设计方案.zip
基于MATLAB的YUV视频压缩与解压缩系统设计方案.zip
Simulink的AMT(自动机械变速器)换挡策略完整设计方案.zip
Simulink的AMT(自动机械变速器)换挡策略完整设计方案.zip
人形机器人关节柔性驱动技术的创新研究.zip
人形机器人关节柔性驱动技术的创新研究.zip--代码
创新点分析
能量效率分析:
脚本计算并比较了电机输入能量和负载耗散能量
直观展示柔性驱动系统的能量传递效率
弹性变形监测:
专门绘制了弹簧变形量曲线
可分析柔性元件在运动过程中的变形特性
抗冲击特性:
通过阶跃响应展示系统对冲击的缓冲能力
柔性结构有效减小了负载受到的冲击
全自主实现:
不使用任何工具箱
基于欧拉积分法实现动力学求解
完全自主编写的控制算法
仿生四足机器人动态运动控制算法设计.zip
仿生四足机器人动态运动控制算法设计
结合博主的文章
大语言模型的低成本训练与优化策略研究(如DeepSeek的模型压缩技术).zip
大语言模型的低成本训练与优化策略研究(如DeepSeek的模型压缩技术).zip
过程调试代码;可结合博主的文章
量化模型大小:
现在会显示合理的大小(接近原始模型大小)
实际应用中,量化权重可进一步压缩存储空间
学生模型准确率:
通过增加训练周期和改进梯度更新,准确率应有所提升
学习率衰减有助于稳定训练过程
向教师模型方向的引导应减少准确率下降
整体平衡:
剪枝模型:约30%压缩率,准确率基本保持不变
量化模型:模型大小合理,准确率基本保持不变
学生模型:约42%压缩率,准确率接近原始模型
遗传算法在电力系统经济调度中的应用.zip
遗传算法在电力系统经济调度中的应用.zip
关键操作包括:
锦标赛选择:选择适应度高的个体作为父代
交叉操作:结合两个父代生成子代
变异操作:随机改变部分机组出力
约束修复:确保满足所有运行约束
精英保留:保留每代最优个体
GA优化的5G通信系统信道分配策略.zip
GA优化的5G通信系统信道分配策略.zip(源码)+说明文档
1. 系统模型
本实现模拟了一个多小区5G网络,包含以下关键组件:
网络拓扑:
7个六边形小区(1个中心+6个邻区)
每个小区随机分布10个用户
小区半径500米
信道模型:
采用3GPP UMa路径损耗模型
包含阴影衰落效应
载波频率3.5GHz
基站发射功率30dBm
资源分配:
15个正交信道
系统带宽100MHz
用户带宽动态分配
2. 遗传算法实现
遗传算法用于优化信道分配策略,最大化系统总容量:
————————————————
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/a_zxswer/article/details/149460961
DE优化的主动噪声控制系统设计与仿真.zip
DE优化的主动噪声控制系统设计与仿真
系统特点
完全自主实现:
不依赖任何MATLAB工具箱
自定义FFT函数实现频谱分析
模块化设计:
DE算法与噪声控制逻辑分离
适应度函数可独立修改
全面可视化:
时域信号对比
频域分析
算法收敛曲线
滤波器系数分布
性能量化:
计算噪声功率
降噪效果(dB)
收敛过程监控
仿真结果分析
运行脚本后,将生成以下分析图表:
基于SA的基因调控网络结构学习算法.zip
算法特点
离散状态空间处理:直接操作离散的网络结构(添加/删除边)
正则化:L1正则化鼓励稀疏网络
高效扰动:三种扰动类型的平衡组合
鲁棒性:通过概率接受机制避免局部最优
可解释性:直接学习调控关系的存在和强度
参数调整建议
温度参数:
初始温度:影响初始接受率(通常设置为使初始接受率~0.8)
冷却速率:控制优化速度(0.8-0.99)
终止温度:决定停止条件
网络约束:
数字孪生驱动下的智能制造系统实时优化.zip
系统模型:
5台机器,3种产品类型
每台机器具有效率、故障率、能耗等参数
订单随机生成,包含产品类型和到达时间
数字孪生体:
虚拟机器状态同步
历史性能数据记录(吞吐量、能耗、利用率)
优化参数配置
实时优化:
基于遗传算法的任务分配优化
每10秒执行一次调度优化
多目标优化:最小化完成时间、平衡机器负载、降低能耗
评估函数:
基于元启发式算法的联邦学习客户端选择优化.zip
基于元启发式算法的联邦学习客户端选择优化
这个脚本实现了基于遗传算法的联邦学习客户端选择优化,主要包含以下组件:
客户端属性模拟:
计算能力、带宽、数据量、数据质量、电池电量和可靠性
这些属性随机生成,模拟真实环境中的客户端差异
遗传算法优化:
染色体表示:二进制向量表示客户端选择状态
适应度函数:综合考虑延迟、数据质量、电池电量和可靠性
选择操作:锦标赛选择策略
交叉操作:均匀交叉
变异操作:位翻转
精英保留:保留最优个体到下一代
联邦学习仿真:
量子遗传算法优化的认知无线电频谱分配.zip
量子遗传算法优化的认知无线电频谱分配
问题建模:
次用户数量:20,可用信道数量:10
信道增益矩阵:随机生成,表示不同用户在信道上的传输质量
干扰矩阵:表示信道间的干扰关系
量子遗传算法核心:
量子染色体表示:每个量子比特代表用户-信道分配概率(|0>未分配,|1>分配)
量子观测:将量子态坍缩为经典二进制解
适应度函数:考虑系统吞吐量、干扰约束和用户分配有效性
量子旋转门:向当前最优解学习,调整量子比特概率幅
量子变异:随机交换量子比特的概率幅
蚁群算法优化光纤网络故障检测路径.zip
蚁群算法优化光纤网络故障检测路径.zip
### 算法说明:
1. **初始化**:
- 随机生成光纤节点坐标
- 计算节点间距离矩阵
- 初始化信息素矩阵和启发式信息
2. **蚂蚁寻路**:
- 每只蚂蚁随机选择起点
- 根据信息素和启发式信息选择下一节点(轮盘赌选择)
- 记录每只蚂蚁的完整路径和总距离
3. **信息素更新**:
- 所有路径上的信息素按挥发系数衰减
- 蚂蚁根据路径质量释放信息素(路径越短释放越多)
4. **最优路径更新**:
- 记录每次迭代中的最短路径
- 更新全局最优路径
改进模拟退火算法的5G大规模波束成形.zip
改进SA算法的5G Massive MIMO波束成形:
自适应温度调度:
动态调整冷却系数α(0.93~0.98)
根据收敛速度调整冷却速率
温度历史记录用于分析算法行为
记忆机制:
存储历史优质解(记忆库大小可调)
用于重启动时跳出局部最优
智能重启动策略:
检测收敛停滞(连续迭代改进<1%)
从记忆库随机选择重启点
重启后温度重置(指数衰减)
自适应邻域搜索:
动态调整扰动步长(余弦退火)
早期大范围探索,后期精细搜索
多目标优化:
联合优化多用户SINR
基于信干噪比(SINR)的评估函数
GA优化的智能交通信号灯配时仿真.zip
是一个使用遗传算法(GA)优化交通信号灯配时的MATLAB脚本实现。该脚本不使用任何工具箱,自行实现了遗传算法和交通流仿真模型
混合优化算法在蛋白质结构预测中的应用.zip
混合优化算法在蛋白质结构预测中的应用
一个使用混合优化算法(遗传算法结合模拟退火)进行蛋白质结构预测的MATLAB仿真脚本。该脚本不使用任何工具箱,实现了简化版的蛋白质结构预测模型。
优化算法在脑机接口特征选择中的应用研究.zip
运行说明:
脚本完整独立运行,无需任何工具箱
首先生成模拟EEG数据(约3秒)
特征提取阶段显示进度(约5-10秒)
优化算法运行显示迭代进度(GA和PSO各约1-2分钟)
最终显示特征选择结果和性能比较图
修复后的代码能正确处理特征维度,完整实现从数据生成到特征选择优化的全流程,适用于脑机接口特征选择研究。
基于改进算法的无人机-车辆协同配送路径规划.zip
基于改进算法的无人机-车辆协同配送路径规划;
该脚本融合了蚁群算法(ACO)和遗传算法(GA)的优势,实现了高效的路径规划解决方案。
智能算法优化的高速列车自动驾驶曲线生成.zip
智能算法优化的高速列车自动驾驶曲线生成
算法说明
问题建模:
将线路离散化为等距分段(50米/段)
速度离散化为0.2m/s步长
考虑线路坡度(前5km上坡1%,后5km下坡0.5%)
目标函数:能耗 + 时间偏差惩罚
动态规划核心:
状态变量:位置 × 速度
状态转移:尝试所有可能的下一速度状态
约束处理:
加速度限制(-0.5~0.5 m/s²)
加加速度限制(±0.5 m/s³)
牵引功率限制
制动能力限制
线路限速
回溯法:
从终点回溯最优路径
记录最优速度曲线和加速度曲线
舒适度保障:
通过加速度和加加速度约束确保乘坐舒适性
加加速度计算基于加速度变化和时间间隔
SA在三维装箱问题中的组合优化仿真.zip
SA在三维装箱问题中的组合优化仿真.zip
算法说明
问题表示:
容器:固定尺寸的立方体
箱子:不同尺寸的矩形箱子,每个箱子有6种可能的旋转方向
模拟退火核心:
初始解:随机生成箱子位置和方向
邻域操作:三种扰动方式(交换箱子位置、改变箱子方向、随机改变位置)
接受准则:Metropolis准则,允许一定概率接受劣解
冷却策略:指数冷却,温度逐渐降低
关键功能:
旋转处理:6种可能的箱子方向
碰撞检测:高效检查箱子重叠和边界约束
位置搜索:在已放置箱子的角落寻找可行位置
可视化:3D展示装箱结果
优化目标:
最大化已用容器体积(空间利用率)
基于多算法融合的锂离子电池健康状态预测.zip
基于多算法融合的锂离子电池健康状态预测
数据生成:
模拟电池容量衰减曲线(指数衰减形式)
生成循环次数和电压降作为特征
添加高斯噪声模拟实际测量
三种基础算法:
线性回归:使用正规方程实现多元线性回归
多项式回归:扩展为二次特征进行回归
指数平滑:自适应选择最优平滑系数α
算法融合:
基于各算法在验证集上的RMSE计算融合权重
采用加权平均策略融合预测结果
混合优化算法驱动的数字农业灌溉系统.zip
混合优化算法驱动的数字农业灌溉系统,matlab实现仿真
混合优化算法(结合遗传算法和模拟退火)
数字农业灌溉系统
优化算法实现:
遗传算法:
实数编码(7天灌溉量)
锦标赛选择
算术交叉
高斯变异
模拟退火:
以GA结果为初始解
自适应邻域搜索
指数降温策略
Metropolis接受准则