28、软件开发团队的容量、松弛时间与会议管理策略

软件开发团队的容量、松弛时间与会议管理策略

1. 容量规划

在软件开发中,容量规划是迭代工作的重要基础。容量规划假设使用迭代方式进行开发,并且需要一定的松弛时间来解决小问题和消除不一致性。

1.1 估算与信任

估算工作需要信任。开发者需要相信他们可以给出准确的估算而不会受到攻击,客户和利益相关者也需要相信开发者提供的是诚实的估算。若这种信任缺失,就需要努力去建立。而且,无论采用何种估算和容量规划方法,都绝不能用容量数字或不正确的估算来攻击开发者,因为这会迅速破坏信任。

1.2 有效使用容量的指标

当能够有效使用容量时,会呈现以下特征:
- 每次迭代的容量稳定且可预测。
- 能够做出迭代承诺并可靠地完成。
- 估算快速简单,甚至无需估算。
- 能在一两分钟内评估大多数故事的规模。

1.3 容量规划的方法
  • Yesterday’s Weather 方法 :核心思想是关注一致性而非准确性,基于过去的测量进行预测,并形成自动纠正的反馈循环。它简单可靠,但依赖松弛时间来弥补不足。
  • 其他方法 :一些流行的替代方法,如基于先前迭代的平均值来确定容量,或者计算跨迭代完成的故事数量。但这些方法往往只是增加了容量数字,而没有提高团队的实际交付能力,可能导致团队难以完成承诺。因此,更好的做法是规划较低的容量,利用产生的松弛时间来提高团队的实际交付能力。
  • #NoEstimates 运动 :有两种方法,一
内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索局部开发之间实现平衡。文章详细解析了算法的初始化、勘探开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOAMOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值