57、DevOps 实践:数据迁移、持续部署与系统架构优化

DevOps 实践:数据迁移、持续部署与系统架构优化

1. 数据迁移

数据库变更通常无法回滚,否则可能会有数据丢失的风险,因此数据迁移需要特别小心。数据迁移类似于增量发布,分为三个步骤:
1. 部署兼容新旧模式的代码 :同时部署数据迁移代码。
2. 运行数据迁移代码 :在部署成功后,可以手动启动或作为部署脚本的一部分自动启动。
3. 移除旧模式代码并重新部署 :迁移完成后,手动移除理解旧模式的代码,然后再次部署。

这种将数据迁移与部署分离的方法,能让每次部署失败后都可回滚,且不会丢失数据。迁移仅在新代码在生产环境中被证明稳定后进行。虽然比在部署期间迁移数据稍复杂,但更安全,还能实现零停机部署。

对于涉及大量数据的迁移,由于迁移期间生产系统需要保持可用,因此需要特别注意。编写迁移代码时应采用增量方式,可能还需要使用速率限制器来优化性能,并同时使用新旧两种模式。例如,从一个表向另一个表移动数据时,读取和更新数据时可以同时查看两个表,但只向新表插入数据。

迁移完成后,要及时清理过时的代码。如果迁移需要较长时间,可在团队任务计划中添加提醒;对于非常长时间的迁移,可在团队日历中添加提醒或在可视化计划中安排“完成数据迁移”的任务。

这种三步迁移过程适用于任何外部状态的更改,除数据库外,还包括配置设置、基础设施变更和第三方服务变更。涉及外部状态时要格外小心,因为错误很难撤销,通常小而频繁的更改比大而不频繁的更改更好。

2. 持续部署

要实现持续部署,团队需要采用严格的持

一、数据采集层:多源人脸数据获取 该层负责从不同设备 / 渠道采集人脸原始数据,为后续模型训练识别提供基础样本,核心功能包括: 1. 多设备适配采集 实时摄像头采集: 调用计算机内置摄像头(或外接 USB 摄像头),通过OpenCV的VideoCapture接口实时捕获视频流,支持手动触发 “拍照”(按指定快捷键如Space)或自动定时采集(如每 2 秒采集 1 张),采集时自动框选人脸区域(通过Haar级联分类器初步定位),确保样本聚焦人脸。 支持采集参数配置:可设置采集分辨率(如 640×480、1280×720)、图像格式(JPG/PNG)、单用户采集数量(如默认采集 20 张,确保样本多样性),采集过程中实时显示 “已采集数量 / 目标数量”,避免样本不足。 本地图像 / 视频导入: 支持批量导入本地人脸图像文件(支持 JPG、PNG、BMP 格式),自动过滤非图像文件;导入视频文件(MP4、AVI 格式)时,可按 “固定帧间隔”(如每 10 帧提取 1 张图像)或 “手动选择帧” 提取人脸样本,适用于无实时摄像头场景。 数据集对接: 支持接入公开人脸数据集(如 LFW、ORL),通过预设脚本自动读取数据集目录结构(按 “用户 ID - 样本图像” 分类),快速构建训练样本库,无需手动采集,降低系统开发测试成本。 2. 采集过程辅助功能 人脸有效性校验:采集时通过OpenCV的Haar级联分类器(或MTCNN轻量级模型)实时检测图像中是否包含人脸,若未检测到人脸(如遮挡、侧脸角度过大),则弹窗提示 “未识别到人脸,请调整姿态”,避免无效样本存入。 样本标签管理:采集时需为每个样本绑定 “用户标签”(如姓名、ID 号),支持手动输入标签或从 Excel 名单批量导入标签(按 “标签 - 采集数量” 对应),采集完成后自动按 “标签 - 序号” 命名文件(如 “张三
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值