26、计算机视觉与物联网中的背景减除技术

计算机视觉与物联网中的背景减除技术

1. 实验测试硬件配置

在相关研究工作的实验测试中,采用了计算机视觉和物联网技术。使用的GPU包括高效的NVIDIA RTX 2070(图灵架构)、嵌入式NVIDIA Jetson TX2(麦克斯韦架构)以及移动NVIDIA GeForce GTX(帕斯卡架构),这些GPU与RGB - D传感器RealSense D435和D415配合使用。其实时处理速度和前景检测精度与相关研究成果类似。不过需要注意的是,对于高分辨率视频,像MOG和码本模型等背景减除算法无法实现实时分割,这表明GPU线程仅适用于低复杂度算法的并行处理,而不适用于高清视频或高复杂度操作的计算。

2. 嵌入式实现

嵌入式计算和超大规模集成电路(VLSI)技术推动了智能相机在市场上的发展。视频相机可视为独立单元,将传感、通信和处理元素集成到一个独立平台,这促使大量通过无线通信的视频相机得以广泛分布。然而,由于这些设备采用电池供电、无线连接且为嵌入式设备,也带来了一系列挑战,如电力供应、有限带宽和内存资源等问题。因此,在嵌入式系统中实现背景减除算法时,简单性和高效性等特性备受青睐,同时在设计算法时还需考虑其在嵌入式系统中的可移植性。

2.1 多种背景减除算法

  • 自适应多模态背景模型(2007年,Valentine等人) :该算法为图像中的每个像素计算一定数量的模式,基于每个像素的时间信息来区分前景和背景,并在嵌入式系统中进行了实现,优化了存储资源和执行时间。
  • 多模态均值(MM)模型(2007年,Apewokin等人) :实验表
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值