27、计算机视觉与物联网中的背景减除技术

计算机视觉与物联网中的背景减除技术

1. 硬件实现与性能提升

一些硬件技术在计算机视觉领域展现出了强大的处理能力。例如,采用“UMC - 90nm CMOS”制造技术,能够在高清帧中实现超过 60 fps 的高处理速率。2019 年,有人提出了一种高度灵活的混合高斯模型(MOG)设计,其利用寄存器传输级描述和定点数值表示,使用了赛灵思公司的 ZedBoard 开发套件。将 OpenCV 源代码中的 MOG 算法转换为 Vivado - HLS 表示,以在硬件中实现。开发套件中包含的 FPGA Artix - 7 的优势得到了充分利用,比如并行执行进程以及使用 Zynq 处理块,借助片上系统制造技术加速了架构的设计和配置,该系统能够以低计算成本实时处理 768 * 576 大小的帧。

2. 并行实现策略
  • GPU 并行实现 :2012 年,Yang 和 Chen 设计了一个在 GPU 设备中并行实现背景减除算法的框架。从两个连续的帧中,使用尺度不变特征变换技术提取最相关的特征,然后通过全局运动补偿(GMC)和仿射变换操作进行计算。该架构由前景分割块、动态背景更新块和 GMC 块三个部分组成,结合了 CPU 和 GPU 的计算能力,增强了并行计算的概念。
  • 多核处理器并行实现 :2011 年,Szwoch 在 OpenMP 编码环境中利用多核处理器的并行性,实现了码本算法的实时处理。通过对先前录制的视频进行测试,验证了多线程配置下算法处理的鲁棒性。测试了诸如核心数量、帧大小、fps、编码方法和场景性质等参数,发现同时运行的核心数量是影响架构性能的关键因素。使用 OpenM
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值