Lc.152 乘积最大子数组

文章介绍了如何使用动态规划解决寻找数组中连续子数组乘积最大值的问题。通过分析负数对最大乘积的影响,采用两个动态数组dp和dp1分别存储以当前元素结尾的最大和最小乘积。在遍历数组时,根据数值正负更新这两个数组,并最终找出最大乘积。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

1 前言

翻译成大白话:就是找一个数组,其连续子数组的乘积最大值。

2 算法思路:

一般求最值的问题首选动态规划。

这道题与[LC.53 最大子序和]很类似。我们假设状态转移方程为:

它表示以第 i 个元素结尾乘积最大子数组的乘积

可是在这里,这样做是错误的。为什么呢?

因为这里的定义并不满足「最优子结构」。具体地讲,如果 a = {5, 6, −3, 4, −3},那么此时 f(i)对应的序列是 {5,30,-3,4,-3},按照前面的算法我们可以得到答案为 30,即前两个数的乘积,而实际上答案应该是全体数字的乘积。我们来想一想问题出在哪里呢?问题出在最后一个 -3。所以我们得到了一个结论:当前位置的最优解未必是由前一个位置的最优解转移得到的。

我们可以根据正负性进行分类讨论。

由于负数存在的原因,我们可根据负数分类,使用来个动态数组。

中记录的是以第 i 个元素结尾乘积最大子数组的乘积。

中记录的是以第 i 个元素结尾乘积最小子数组的乘积。

3 具体代码

package cn.msf.hot100;

/**
 * @author : msf
 * @date : 2023/1/3
 * lc.152:乘积最大子数组:应该是用动态规划
 */
public class MaxProduct {
    public static void main(String[] args) {
        int[] nums = {2, 3, -2, 4};
        int res = new MaxProduct().maxProduct(nums);
    }

    public int maxProduct(int[] nums) {
        int n = nums.length;
        // 定义dp[i]:从nums[...i]为止,乘积最小的子数组。
        int[] dp = new int[n];
        // 定义dp[i]:从nums[...i]为止,乘积最大的子数组。
        int[] dp1 = new int[n];
        // base case
        dp[0] = nums[0];
        dp1[0] = nums[0];
        for (int i = 1; i < n; i++) {
            // 在不考虑0的前提下,如果考虑0 则需要将nums[i]考虑
            // 如果有nums[i]<0,那么dp1[i-1] * 负值 = dp[i].
            dp[i] = min(dp[i - 1] * nums[i], dp1[i - 1] * nums[i], nums[i]);
            // 如果是正值,那么dp1[i-1] * 正值最大。 如果是负值,那么dp[i-1] * 负值肯定是最大。
            dp1[i] = max(dp[i - 1] * nums[i], dp1[i - 1] * nums[i], nums[i]);
        }
        // 遍历所有子数组的最大乘积,求最大值
        int res = Integer.MIN_VALUE;
        for (int i = 0; i < n; i++) {
            res = Math.max(res, dp1[i]);
        }
        return res;
    }

    int min(int a, int b, int c) {
        return Math.min(Math.min(a, b), c);
    }

    int max(int a, int b, int c) {
        return Math.max(Math.max(a, b), c);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

兜兜转转m

一毛钱助力博主实现愿望

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值