1.Pandas中的数据结构:Series和DataFrame
Pandas 的主要数据结构是 Series (一维数据)与 DataFrame(二维数据),这两种数据结构足以处理金融、统计、社会科学、工程等领域里的大多数典型用例。
Series 是一种类似于一维数组的对象,它由一组数据(各种Numpy数据类型)以及一组与之相关的数据标签(即索引)组成。
DataFrame 是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。
DataFrame 既有行索引也有列索引,它可以被看做由 Series 组成的字典(共同用一个索引)
2.示例代码
import numpy as np
import pandas as pd
# 用numpy数组创建Series
data = pd.Series([0.25, 0.5, 0.75, 1.0])
n1 = data.values # values是一个numpy数组
sub1data = data[1]
sub2data = data[1:3]
data2 = pd.Series([0.25, 0.5, 0.75, 1.0],
index=['a', 'b', 'c', 'd']) # 类似一个广义的numpy数组,可以显式地指定index
sub1data2 = data2['b']
data3 = pd.Series([0.25, 0.5, 0.75, 1.0],
index=[2, 5, 3, 7]) # 索引可以不必是连续的
# 用字典创建Series
population_dict = {'California': 38332521,
'Texas': 26448193,
'New York': 19651127,
'Florida': 19552860,
'Illinois': 12882135