1.pandas中访问数据的几种方法
- df.loc方法,根据行、列的标签值查询
- df.iloc方法,根据行、列的数字位置查询
- df.query方法
2.其中.loc既能查询,又能覆盖写入,强烈推荐!
Pandas使用df.loc查询数据的方法
- 使用单个列值查询数据
- 使用值列表批量查询
- 使用数值区间进行范围查询
- 使用条件表达式查询
3.企业项目实战
.loc赋值用的比较多
.iloc访问数据用的比较多
import pandas as pd
area = pd.Series({'California': 423967, 'Texas': 695662,
'New York': 141297, 'Florida': 170312,
'Illinois': 149995})
pop = pd.Series({'California': 38332521, 'Texas': 26448193,
'New York': 19651127, 'Florida': 19552860,
'Illinois': 12882135})
df = pd.DataFrame({'city': area.index, 'area': area, 'pop': pop})
df['density'] = df['pop'] / df['area']
print(df.values)
print(df.values[0])
print('------area------')
print(df['area'])
print('------.loc的企业项目常见用法------')
print('------1.使用单个列值查询数据------')
print(df.loc['Texas'])
print('------2.使用值列表批量查询--