
Pandas高阶应用
Pandas高阶应用,企业实战案例中利用Pandas库进行数据清洗和数据处理
无形忍者
运筹优化与数学建模实战,运筹优化算法科普,路径优化,排班排产,供需匹配,智能补货,仓储物流等项目实战。
完整代码清单:https://www.kdocs.cn/l/ckfuXIOK3qM8
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Pandas300题|每天5题,百炼成神(1)
Pandas300题|每天5题,百炼成神(1)1.本期内容:从json、list读取数据筛选行数据读取列名修改列名统计某一列原创 2024-12-25 15:34:29 · 168 阅读 · 0 评论 -
Pandas系列|第五期:Pandas中数据处理函数
使用drop,默认地,它不改变原有的df中的数据,而是返回另一个dataframe来存放删除后的数据。isin函数用于筛选数据框中某一列的值是否属于给定的序列。inplace=True,则会直接改变原有的df中的数据。使用截取函数去掉头部尾部一个字符:[1:-1]使用截取函数去掉尾部一个字符:[:-1]使用截取函数去掉头部一个字符:[1:]1.isin函数的应用。原创 2024-12-24 09:51:37 · 206 阅读 · 0 评论 -
Pandas系列|第四期:Pandas中日期处理函数
1. date_range 获取2个日期之间的所有日期。2. date_range 获取2个日期之间的所有月份。3. 给定日期获取相隔2年的年份。原创 2024-12-24 09:33:44 · 236 阅读 · 0 评论 -
Pandas系列|第三期:Pandas中访问数据
2.其中.loc既能查询,又能覆盖写入,强烈推荐!Pandas使用df.loc查询数据的方法。.iloc访问数据用的比较多。1.pandas中访问数据。.loc赋值用的比较多。原创 2024-12-23 18:26:35 · 248 阅读 · 0 评论 -
Pandas系列|第二期:Pandas中的数据结构
Pandas 的主要数据结构是 Series (一维数据)与 DataFrame(二维数据),这两种数据结构足以处理金融、统计、社会科学、工程等领域里的大多数典型用例。Series 是一种类似于一维数组的对象,它由一组数据(各种Numpy数据类型)以及一组与之相关的数据标签(即索引)组成。DataFrame 是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。DataFrame 既有行索引也有列索引,它可以被看做由 Series 组成的字典(共同用一个索引)原创 2024-12-23 16:18:47 · 557 阅读 · 0 评论 -
Pandas系列|第一期:Pandas简介
Pandas 的主要数据结构是 Series (一维数据)与 DataFrame(二维数据),这两种数据结构足以处理金融、统计、社会科学、工程等领域里的大多数典型用例。Series 是一种类似于一维数组的对象,它由一组数据(各种Numpy数据类型)以及一组与之相关的数据标签(即索引)组成。DataFrame 是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。Pandas 一个强大的分析结构化数据的工具集,基础是 Numpy(提供高性能的矩阵运算)。原创 2024-12-23 16:15:54 · 135 阅读 · 0 评论 -
Pandas系列|第十期:将全部行按照其中两列生成的列表展开
不同的编码item有最早供应周期与最晚供应周期,在最早供应周期、最晚供应周期之间的每个供应周期展开生成一笔9999的供应量。关键点:apply函数的应用。原创 2024-12-18 09:30:00 · 170 阅读 · 0 评论 -
Pandas系列|第九期:全部行按某一列(列值是列表)展开
explode函数用于将一个包含列表、Series或者其他可迭代对象的列拆分成多行。每个元素将会在新的行中重复,同时保留其他列的值。Pandas中的某一列的列值是列表,现在需要将数据按照该列拆分成多行。explode函数,原创 2024-12-17 09:30:00 · 171 阅读 · 0 评论 -
Pandas系列|第七期:按多列分组排序并删除每组中排序不在第一位的
关键点:按照多列排序、分组、删除每个分组中排序最大的。背景:物料清单(BOM)进行数据清洗时,在BOM表中按照父编码进行分组,保留QTY最大且失效时间最晚的一行,删除其余的行。原创 2024-12-16 11:08:43 · 173 阅读 · 0 评论 -
Pandas系列|第八期:两个日期之间有多少个自然星期,以及每个自然星期的天数
关键点:求两个日期之间有多少个自然星期,以及每个自然星期的天数。涉及函数start_date.weekday()计算某个日期类型的值是星期几(返回值0,1,2,3,4,5,6分别代表星期一到星期日)是按照总的供应量展开到供应开始日期至供应结束日期之间的每个周期而得到的。【自然周:从周一开始到周天结束】背景:计算排产计划中的产能时,具体的计算公式是:每个周期。(1个自然星期算1个周期)自然星期的天数*日供应量。原创 2024-12-15 11:00:00 · 192 阅读 · 0 评论 -
Pandas系列|第六期:列值的前N码模糊匹配
关键点:前N码模糊匹配df['col'].str.startswith(tuple(item_prefix_list))。背景:物料清单(BOM)在做关键器件筛选时,需要筛选出编码的。原创 2024-12-13 17:56:50 · 276 阅读 · 0 评论