Spark 性能调优七步法

本文档综合了 Spark 工程中常见的性能瓶颈和优化技巧,分为七大调优方向,适用于 PySpark 和 Scala Spark 场景,包括资源配置、并行度、缓存、垃圾回收、UDF 性能、Shuffle 优化和作业结构管控等。


一、资源配置调优

目标

合理分配 executor 和 JVM 内存,避免 OOM 和 GC 过高导致性能下降或 executor 被 YARN Kill。

优化策略

参数推荐配置说明
--executor-memory8G ~ 20GJVM 堆内存,过大易导致 Full GC
--executor-cores2 ~ 5避免超过带条数导致 GC
spark.executor.memoryOverhead至少 2G(PySpark 推荐为 4G 或更高)off-heap 内存,包括 Python UDF/缓冲区/数据缓存
--num-executors根据总核数计算= 总CPU核数 / 每executor核数

示例

--executor-memory 16G \
--executor-cores 4 \
--conf spark.executor.memoryOverhead=4G \
--num-executors 50

二、数据分区和并行度

目标

避免 task 单次处理数据过多或过少,导致 GC 或分布失衡,强化应用的并行能力。

优化策略

  • 初始读取后使用 repartition(n) 指定分区

  • 调整 spark.sql.shuffle.partitions(默认 200)

  • 结果写出前使用 coalesce(n) 减少小文件

df = df.repartition(200)
spark.conf.set("spark.sql.shuffle.partitions", "400")
df.coalesce(100).write.parquet("...")

三、缓存优化

目标

提高数据重复读取时性能,避免多次进程计算。

优化策略

  • 使用 persist() 替代 cache()

  • 指定缓存级别:MEMORY_AND_DISK_SER 节省内存

  • 后续不使用时应该 unpersist()

from pyspark import StorageLevel
df.persist(StorageLevel.MEMORY_AND_DISK_SER)
...
df.unpersist()

四、垃圾回收 (GC) 优化

目标

降低 GC 时间,避免 JVM 停顿,提高作业稳定性。

优化策略

  • JVM 堆内存 <= 20G

  • 推荐使用 G1GC

  • 启用 GC 日志分析

--conf spark.executor.extraJavaOptions="-XX:+UseG1GC -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCDateStamps"

五、UDF 代码和逻辑优化

目标

减少 JVM 和 Python 之间的序列化或处理费,提高运行效率。

优化策略

  • 优先考虑 Spark SQL 表达式或 built-in 函数

  • 用 pandas UDF 替换 Python UDF

  • 避免 collect()/groupByKey()

@pandas_udf(StringType(), functionType="PANDAS_UDF")
def clean(col: pd.Series) -> pd.Series:
    return col.str.lower().str.strip()

df = df.withColumn("cleaned", clean("name"))

六、Shuffle 性能优化

目标

降低 shuffle 输入输出 IO 和缓冲压力,避免倦缓/磁盘 spill,提高性能。

优化策略

  • 避免 groupByKey,优先 reduceByKey 或 aggregateByKey

  • 启用 shuffle 压缩、spill 压缩

  • 适应场景使用 Broadcast Join / Sort-Merge Join

  • 解决数据倾斜:Salting 或 AQE

示例配置

--conf spark.shuffle.compress=true \
--conf spark.shuffle.spill.compress=true \
--conf spark.shuffle.file.buffer=64k \
--conf spark.sql.autoBroadcastJoinThreshold=10MB \
--conf spark.sql.adaptive.enabled=true

七、作业结构和任务管理

目标

控制 DAG 深度,避免特殊大 task 倾斜,提升较均衡执行效率。

优化策略

  • 较复杂的 DAG 作业分时 checkpoint/cache

  • 推荐使用 AQE 展现时动性分区和 join 选择

  • 避免大幅 broadcast join (大于 10MB)

spark.conf.set("spark.sql.adaptive.enabled", "true")

总结:Spark 调优七步法(记忆词:资-分-存-收-码-洗-控)

分类内容
1. 资源配置内存/核数/超越内存配置
2. 分区并行度repartition / shuffle 分区
3. 数据缓存persist 级别 / 释放时机
4. GC 优化G1GC / JVM 堆 / GC 日志
5. UDF 逻辑pandas UDF / Spark SQL 替代
6. Shuffle 优化join 类型 / 倾斜解决方案
7. 作业控制AQE / checkpoint / 分步执行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值