两种最短路

//基于迪杰斯特拉算法和弗洛伊德算法的最短路
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<cstring>

 const int inf = 0x3f3f3f3f;

int G[1000][1000];
bool vis[1000];
int n;

int main()
{

        //建立邻接矩阵,没有边距离为-1;
        std::cin>>n;
        for(int i = 0; i < n; i++ )
            for(int j = 0; j < n; j++)
            {
                std::cin>>G[i][j];
            }

        //迪杰斯特拉算法,算出其他点到点k的最短距离
        int k;
        std::cin>>k;
        int dis[1000];//保存点k到其他点的距离
        //初始化
        memset(vis,false,sizeof(vis));
        memset(dis,-1,sizeof(dis));
        for(int i = 0; i < n; i++)
        {
            if(i != k)
                dis[i] = G[k][i];
                if(dis[i] == -1)
                    dis[i] = inf;
        }
        vis[k] = true;

        for(int i = 0; i < n; i++)
        {
            int mindis = inf;
            int temp = k;
            //找出每一次距离最小的点temp
            for(int  j = 0; j < n; j++)
            {
                if(!vis[j] && dis[j] < mindis)
            {
                    temp = j;
                    mindis = dis[temp];
            }
            }
            vis[temp] = true;

            //更新到其他点的最小距离
            for(int j = 0; j < n; j++)
            {
                if(!vis[j] && G[temp][j] < inf)
                {
                    if(dis[temp] + G[temp][j] < dis[j])
                        dis[j] = dis[temp]+G[temp][j];
                }
            }
        }

        //弗洛伊德
        int dis2[1000][1000];
        for(int i = 0; i < n; i++)
        {
            for(int j = 0; j < n; j++)
            {
                dis2[i][j] = G[i][j];
            }
        }

        //对每三个点之间都进行一次松弛操作,这样所以的点之间都会是最短的
        for(int  i = 0; i < n; i++)
        {
            for(int j = 0; j < n; j++)
            {
                for(int k = 0; k < n; k++)
                {
                    if(dis2[i][k] + dis2[k][j] < dis2[i][j])
                        dis2[i][j] = dis2[i][k] + dis2[k][j];
                }
            }
        }


    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值