1、Highway Network --- 首个成功训练成百“上千层”(100层及900层)的卷积神经网络
特点:借鉴LSTM,引入门控单元,将传统前向传播增加一条计算路径,变成公式(3)形式
增加了额外训练参数W_T
2、深层网络退化问题
越深的网络拟合能力越强,但在增加网络层数的过程中,当达到一定层数时,继续增加层数,训练误差变大的现象

可以看出,34层ResNet比18层ResNet好2.8%。更重要的是,34层ResNet显示出相当低的训练误差,并可推广到验证数据。这表明,在这种情况下,退化问题得到了很好的解决,我们设法通过增加深度获得了精度增益,并且ResNet更深但